بررسی آزمایشگاهی خواص فیزیکی و شیمیایی سیالات سبک وزن کلوئیدی گازی افرونی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

2 دانشیار، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

چکیده

این مقاله خواص رئولوژی، پایداری و میزان هرزروی سیالات افرونی را ارائه می‌دهد. هشت مدل رئولوژیکی برای بررسی رفتار رئولوژی جریان سیالات افرونی به‌کار گرفته شده و مدل مناسب برای پیش‌بینی رفتار جریان سیال انتخاب شده است. آنالیز پایداری سیال با استفاده از روش اندازه‌گیری نرخ درین سیال افرونی بررسی شده است. سپس میزان هرزروی این سیالات توسط تست استاندارد API filtration بررسی گردیده است. همچنین پارامترهای مدل‌های رئولوژیکی مختلف مانند شاخص جریان سیال، سازگاری سیال و نقطه تسلیم تعیین می‌گردد. نتایج حاصل نشان می‌دهد که وجود سورفکتانت‌های سدیم دودسیل سولفات و ستیل متیل تری آمونیوم بروماید باعث بهبود خواص سیالات حفاری افرونی شده است و سورفکتانت آنیونی سدیم دودسیل سولفات نسبت به سورفکتانت کاتیونی ستیل تری متیل آمونیوم بروماید در بهبود خواص سیالات حفاری افرونی دارای عملکرد بهتری است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental Investigation of Physico-Chemical Characteristics of Light Weight Colloidal Gas Aphron (CGA)

نویسندگان [English]

  • Amir Tabzar 1
  • Mohammad Hossein Ghazanfari 2

1 Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran

2 Associate Professor, Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran

چکیده [English]

This paper presents rheology, stability and filtration loss characteristics of Colloidal Gas Aphron (CGA). Eight rheological models are applied for investigation the rheological behavior of CGA based fluids and proper model are chosen in which best described the rheological properties of CGA based Fluids. Stability analysis of CGA based fluids is examined by measuring drain rate technique. Also, Standard API filtration test were applied for investigation of the CGA based fluid loss in this study. Moreover, Rheological parameters such as fluid flow index, fluid consistency and yield point were determined. The results of the experiments show that both SDS and CTAB surfactants were improved the properties of the CGA based fluids in which SDS anionic surfactant has a better performance compared to CTAB cationic surfactant.

کلیدواژه‌ها [English]

  • Anionic/Cationic Surfactant
  • Colloidal gas aphron
  • rheology
  • stability
  • Fluid loss
  1. Sebba, F. (1985). Separations using aphrons. Separation and Purification Methods, 14(1), 127-148.
  2. Dai, Y., & Deng, T. (2003). Stabilization and characterization of colloidal gas aphron dispersions. Journal of colloid and interface science, 261(2), 360-365.
  3. Matsushita, K., Mollah, A.H., Stuckey, D.C., Del Cerro, C., Bailey, A.I., “Predispersed solvent extraction of dilute products using colloidal gas aphrons and colloidal liquid aphrons: Aphron preparation, stability and size” Colloids Surf. 69 (1992) 65.
  4. Ziaee, H., Arabloo, M., Ghazanfari, M. H., Rashtchian. D. “Herschel–Bulkley rheological parameters of light weight colloidal gas aphron (CGA) based fluids” 2014, J. Chemical Engineering Research and Design.
  5. Jauregi, P., Gilmour, S., & Varley, J. (1997). Characterization of colloidal gas aphrons for subsequent use for protein recovery. Chemical Engineering Journal, 65(1), 1-11.
  6. Save, S. V., & Pangarkar, V. G. (1994). Characterization of colloidal gas aphrons. Chemical Engineering Communications, 127(1), 35-54.
  7. Bjorndalen, N., E. kuru. “Stability of Micro bubble-Based Drilling Fluids under Downhole Conditions” June 2008, Volume 47, No. 6, J. Canadian Petroleum Technology.
  8. Kosynkin, D. V., Ceriotti, G., Wilson, K. C., Lomeda, J. R., Scorsone, J. T., Patel, A. D., & Tour, J. M. (2011). Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS applied materials & interfaces, 4(1), 222-227.
  9. Jayanth T. Srivtsa, Malogorzata B. Ziaja “An Experimental Investigation on use of Nanoparticles as Additives in a Surfactant – Polymer Based Drilling Fluid” 2012, J. International Petroleum Technology Conference.
  10. Huang, T., Crews, J.B., Agrawal, G. and Baker Hughes “Nanoparticle Pseudo Cross Linked Micellar Fluids: Optimal Solution for Fluid – Loss Control with Internal Breaking   ”2010, J. SPE, 128067.
  11. Arabloo, M., Shahri, M. P., & Zamani, M. (2013). Characterization of colloidal gas aphron-fluids produced from a new plant-based surfactant. Journal of Dispersion Science and Technology, 34(5), 669-678.
  12. Bjorndalen, N., & Kuru, E. (2008). Physico-chemical characterization of aphron-based drilling fluids. Journal of Canadian Petroleum Technology, 47(11), 15-21
  13. Brookey, T., 1998. “Micro-bubbles”: new aphron drill-in fluid technique reduces formation damage in horizontal wells. In: SPE Formation Damage Control Conference, Lafayette, LA.
  14. Khalil, M., Mohamed Jan, B., 2012. Herschel–Bulkley rheological parameters of a novel environmentally friendly light weight biopolymer drilling fluid from xanthan gum and starch. J. Appl. Polym. Sci. 124, 595–606.
  15. Arabloo Narehei, M., Pordel Shahri, M., Zamani, M., 2012.Rheologicaland filtration Loss characteristics of colloidal gas aphron based drilling fluids. J. Jpn. Pet. Inst. 55 (3), 182–190.
  16. Arabloo, M., Pordel Shahri, M., 2014. Experimental studies on stability and Viscoplastic modeling of colloidal gas aphron (CGA) based drilling fluids. J. Petrol. Sci. Eng. 113, 8–22.
  17. Nasiri, M., Ashrafizadeh, S.N., 2010.Novel equation for the prediction of rheological parameters of drilling fluids in anannulus.Ind.Eng.Chem.Res.49 (7), 3374–3385.
  18. Bjorndalen, H. N., Jossy, W. E., Alvarez, J. M., & Kuru, E. (2014). A laboratory investigation of the factors controlling the filtration loss when drilling with colloidal gas aphron (CGA) fluids. Journal of Petroleum Science and Engineering, 117, 1-7.
  19. Roy, D., Valsaraj, K. T., Constant, W. D., & Darji, M. (1994). Removal of hazardous oily waste from a soil matrix using surfactants and colloidal gas aphron suspensions under different flow conditions. Journal of Hazardous Materials, 38(1), 127-144.
  20. Moshkelani, M., & Amiri, M. C. (2008). Electrical conductivity as a novel technique for characterization of colloidal gas aphrons (CGA). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 262-269.
  21. Yan, Y.L., Qu, C.T., Zhang N.S., Yang, Z.G., Liu, L. Colloids Surf. A. 259 (2005) 167.
  22. Belkin, A., Irving, M., O’Connor, R., Fosdick, M., Hoff T., And Growcock, F.B., 2005, “How Aphron Drilling Fluids Work” SPE 96145, Dallas, Texas, U.S.A, 9-12 October.
  23. A. Tabzar, M.A., M.H. Ghazanfari, Rheology, stability and filtration characteristics of Colloidal Gas Aphron fluids: role of surfactant and polymer type, J. Nat. Gas Sci. Eng. 26 (2015) 895–906.
  24. A. Tabzar, M.H. Ghazanfari, Pore-scale analysis of filtration loss control by Colloidal Gas Aphron Nano-Fluids (CGANF) in heterogeneous porous media, J. Exp. Thermal Fluid Sci. 77 (2016) 327-336.
  • تاریخ دریافت: 04 اردیبهشت 1401
  • تاریخ پذیرش: 04 اردیبهشت 1401
  • تاریخ اولین انتشار: 04 اردیبهشت 1401