بررسی اثر ساختار پلی استایرنی سورفکتانت SDBS بر فرایند تشکیل هیدرات متان در حضور نانوذرات روی

نوع مقاله : مقاله ترویجی

نویسندگان

1 عضو هیئت علمی پژوهشگاه صنعت نفت، پژوهشگاه صنعت نفت، تهران، ایران، کدپستی ۱۳۷-۱۴۶۶۵

2 نشریه مهندسی گاز ایران، انجمن مهندسی گاز ایران، تهران، ایران

چکیده

در این تحقیق به‌منظور بهبود شاخص‌های اصلی فرایند تشکیل هیدرات از یک ساختار ترکیبی پیشنهادی استفاده شده که در سنتز و انتخاب ترکیبات آن یک مهندسی رفتار سطحی پیاده‌سازی شده است. زمینۀ اصلی این ساختار سورفکتانت SDBS است که به‌عنوان عامل محرکۀ فرایند انحلال انتخاب شده و در ساختار آن نانوذرات فلزی روی با هدف افزایش راندمان مرحلۀ رشد و لایۀ پلیمری پلی استایرن با هدف حضور ایدئال و منفک نانوذرات و همچنین کنترل کف ایجادشده در سیستم وارد شده است. لایۀ پلیمری موردنظر ضمن اینکه قادر است میزان تولید کف و ناپایداری سیستم را در هنگام تجزیۀ گاز به‌طور قابل‌توجهی کاهش دهد، به‌عنوان یک پل ارتباطی گروه‌های عاملی کربوکسیل را جهت اتصال نانوذرات روی در کنار سورفکتانت ایجاد می‌کند. بدین ترتیب، لایه‌گذاری پلیمری برای سورفکتانت‌ها آن‌ها را برای کاربرد در مصارف صنعتی جهت ذخیره‌سازی و مخصوصاً آزادسازی گاز از شکل هیدرات مستعد می‌کند. همچنین شواهد آزمایشگاهی دال بر آن است که استفاده از سیال عامل حاوی غلظت کمی از ساختار ترکیبی پیشنهادی این تحقیق می‌تواند زمان فرایند تشکیل هیدرات را تا یک‌چهارم کاهش داده و حجم ذخیره‌سازی گاز را نیز دو برابر کند. این نتایج در استفاده از این ساختار مهندسی‌شده در طیف صنعتی بسیار جذاب بوده که مقادیر آن پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Polystyrene/SDBS Effect on Methane Hydrate Formation in Presence of Zinc Nanoparticles

نویسندگان [English]

  • Ahmad Ghozatloo 1
  • Shahla Azashin 2

1 Faculty member of Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 , Iranian Journal of Gas Engineering, Iranian Gas Institute, Tehran, Iran

چکیده [English]

To improve the basic indexes of the hydrate formation process, , a proposed hybrid structure was used in this study, and a surface behavior engineering has been implemented to synthesize and select the components of it. The main agent of this structure is SDBS, a surfactant which has been selected as the driving factor for the dissolution stage. In this structure, zinc metal nanoparticles were stabilized to increase the efficiency of the hydrate growth stage and the polystyrene has been layered to provide an ideal and flexible nanoparticle and control the foam formation. The polymer layer, while capable of significantly reducing the amount of foam formation and decreasing the instability of the system during gas decomposition, provides a bridge between the carboxyl functional groups for bonding the zinc nanoparticles to the surfactant. Thus, polymer layer for surfactants makes them susceptible to industrial applications in the storage and especially release of hydrate from the gas. Experimental evidences also suggest that using a fluid containing a low concentration of the proposed composite structure can reduce the hydrate formation time by up to a quarter, and also double the volume of gas storage. These results are very attractive to use this engineered structure in industrial scale and its quantities are suggested.

کلیدواژه‌ها [English]

  • Hydrate
  • surfactant
  • Polystyrene
  • nanoparticles
  • Zinc
  • induction
  • Nucleation
  1. Baek S., Ahn Y.H., Zhang J.S., Min J.W., Lee H., Lee J.W., “Enhanced methane hydrate formation with cyclopentane hydrate seeds”, Appl Energy, 202, 32–41, 2017.
  2. Rossi F., Filipponi M., Castellani B., “Investigation on a novel reactor for gas hydrate production”, Appl Energy, 99, 167–72, 2012.
  3. Sloan E.D., Koh C.A., Clathrate hydrates of natural gases, New York: CRC Press; 2008.
  4. Naveed Khan M., Peters C., Koh C., “Desalination using gas hydrates: The role of crystal nucleation, growth and separation”, Desalination, 468, 114-121. 2019.
  5. Wang F., Jia Z.Z., Luo S.J., Fu S.F., Wang L., Shi X.S., “Effects of different anionic surfactants on methane hydrate formation”, Chem. Eng. Sci., 137, 896–903, 2015.
  6. Christophe D., Joseph D., Jean-Philippe T., Marvin R., “Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2-CH4 gas hydrates”, Chem. Eng. Sci., 152, 736–45, 2016.
  7. Wang F., Liu G.Q., Guo G., Luo S.J., Guo R.B., “Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern”, Chem. Eng. Sci., 144, 2016, 108–15.
  8. Yoslim J., Linga P., Englezos P., “Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants”, Cryst Growth, 313, 68–80, 2010.
  9. Govindaraj V., Mech D., Pandey G., Nagarajan R., Sangwai J.S., “Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water”, J Nat Gas Sci Eng, 26, 810–825, 2015.
  10. Jin Y., YiYu L., Dong-Liang Z., Zhen-Lin Z., Jian B., “Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids”, Energy, 180, 728-736, 2019.
  11. Wang F., Liu G.Q., Meng H.L., Guo G., Luo S.J., Guo R.B., “Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters”, ACS Sustain Chem. Eng., 4, 107–113, 2016.
  12. Wang F., Guo G., Luo S.J., Guo R.B., “Grafting of nano-Ag particles on –SO3 –coated nanopolymers for promoting methane hydrate formation”, Mater Chem. A, 5, 86–93, 2017.
  13. Carroll J., Natural Gas Hydrates, Second Edition: A Guide for Engineers, ISBN-10: 0750684909, Gulf Professional, USA, 2009.
  14. Collett, T.S. and Ladd, J., “Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data”, Paull, C.K., Matsumoto, R., Wallace, P.J. and Dillon, W.P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 164, 179-191, 2000.
  15. Chaturvedi E., Prasad N., Mandal A., “Enhanced formation of methane hydrate using a novel synthesized anionic surfactant for application in storage and transportation of natural gas”, Natural Gas Science and Engineering, 56, 246-257, 2018.
  • تاریخ دریافت: 05 اردیبهشت 1401
  • تاریخ پذیرش: 05 اردیبهشت 1401
  • تاریخ اولین انتشار: 05 اردیبهشت 1401