سنتز فیشر تروپش برروی کاتالیست هتروژن با استفاده از گاز سنتز

نوع مقاله : مقاله ترویجی

نویسندگان

1 گروه مهندسی شیمی، دانشگاه سیستان و بلوچستان، زاهدان، کدپستی 9816745936، ایران

2 عضو هیات علمی، گروه مهندسی شیمی، دانشکده مهندسی شیمی نفت و گاز، دانشگاه شیراز، کدپستی 719468433، شیراز، ایران

چکیده

سنتز فیشر تروپش واکنشی است که بر اساس کاتالیست هتروژن بین منوکسید کربن و هیدروژن (گاز سنتز) صورت می‌گیرد. محصولات واکنش شامل مخلوطی از هیدروکربن‌ها و ترکیبات اکسیژن‌دار است که عموما دربردارنده‌ی پارافین، الفین و الکل است. این فرآیند سوخت‌های هیدروکربنی تولید می‌کند که کیفیت بالایی‌ داشته لذا توسعه آن می‌تواند بسیاری از مشکلات مربوط به آلودگی هوا را در صنعت حمل و نقل مرتفع نماید.
جدیدترین بررسی مراجع نشان می‌دهد که از نقطه نظر مکانیسمی، مدل توزیع اندرسون شولز فلوری می‌تواند روند تولید ترکیبات هیدروکربنی را تبیین کند. راکتورهای بستر سیال، بستر ثابت و دوغابی سه نوع راکتور متداول در این فرآیند هستند که تنها دو راکتور آخر دارای کاربرد صنعتی هستند. فلزات گروه هشتم واسطه در جدول تناوبی مانند آهن، کبالت و روتنیوم به عنوان کاتالیست فرآیند مورد استفاده قرار می‌گیرند، اما تنها آهن و کبالت مورد قبول صنعت قرار گرفته اند.  

کلیدواژه‌ها

عنوان مقاله [English]

Fischer Tropsch Synthesis Based on Heterogeneous Catalysis from Syngas

نویسندگان [English]

  • Seyed Amir Hossein Seyed Mousavi 1
  • Hossein Atashi 1
  • Farshad Farshchi Tabrizi 2
  • Sam Razmjooei 1

1 Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.

چکیده [English]

The Fischer Tropsch Synthesis is the heterogeneous catalysis reaction between carbon monoxide and hydrogen. Products of the reaction always include the mixture of hydrocarbons and oxygenates, comprising mainly paraffins, olefins and alcohols. This process produces high quality hydrocarbon fuels that are suitable for transportation industry with no pollutant. Development of FTS can be solved the majority of concern about air pollution. 
Investigation of references shows as the mechanistic viewpoint, Anderson-Schulz-Flory distribution model can interprets the trend of hydrocarbon formation. Fluidized bed, fixed bed and slurry phase reactors are the three type of common reactors in the FTS. However, only last of the two reactors type have the commercial usage. Metals from the VIII B group of the periodic table such as iron, cobalt and ruthenium use for FTS catalysis. However, only iron and cobalt for industrial application are acceptable.

کلیدواژه‌ها [English]

  • Fischer Tropsch Synthesis
  • Syngas
  • Heterogeneous Catalysis
  • Iron
  • Cobalt
  1. Li T, Wang H, Yang Y, Xiang H, Li Y. Study on an iron–nickel bimetallic Fischer–Tropsch synthesis catalyst. Fuel Processing Technology. 2014;118:117-24.
  2. Kempegowda RS, del Alamo Serrano G, Güell BM, Tran K-Q. Techno-economic Analysis of Biomass to Fischer-tropsch Diesel Production with and without CCS Under Norwegian Conditions. Energy Procedia. 2014;61:1248-51.
  3. Melaet G, Ralston WT, Li C-S, Alayoglu S, An K, Musselwhite N, et al. Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer–Tropsch Synthesis and CO2 Hydrogenation. Journal of the American Chemical Society. 2014;136:2260-3.
  4. Pendyala VRR, Jacobs G, Ma W, Klettlinger JLS, Yen CH, Davis BH. Fischer-Tropsch synthesis: effect of catalyst particle (sieve) size range on activity, selectivity, and aging of a Pt promoted Co/Al2O3 catalyst. Chemical Engineering Journal. 2014;249:279-84.
  5. Shimura K, Miyazawa T, Hanaoka T, Hirata S. Fischer–Tropsch synthesis over alumina supported cobalt catalyst: Effect of crystal phase and pore structure of alumina support. Journal of Molecular Catalysis A: Chemical. 2014;394:22-32.
  6. Klaigaew K, Samart C, Chaiya C, Yoneyama Y, Tsubaki N, Reubroycharoen P. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chemical Engineering Journal. 2014.
  7. Parnian MJ, Khodadadi AA, Taheri Najafabadi A, Mortazavi Y. Preferential chemical vapor deposition of ruthenium on cobalt with highly enhanced activity and selectivity for Fischer–Tropsch synthesis. Applied Catalysis A: General. 2014;470:221-31.
  8. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology. 2014;4:2210-29.
  9. Krylova AY. Products of the Fischer-Tropsch synthesis (A Review). Solid Fuel Chem. 2014;48:22-35.
  10. Filot IAW, van Santen RA, Hensen EJM. The Optimally Performing Fischer–Tropsch Catalyst. Angewandte Chemie. 2014;126:12960-4.
  11. Munnik P, de Jongh PE, de Jong KP. Control and Impact of the Nanoscale Distribution of Supported Cobalt Particles Used in Fischer–Tropsch Catalysis. Journal of the American Chemical Society. 2014;136:7333-40.
  12. Yao M, Yao N, Shao Y, Han Q, Ma C, Yuan C, et al. New insight into the activity of ZSM-5 supported Co and CoRu bifunctional Fischer–Tropsch synthesis catalyst. Chemical Engineering Journal. 2014;239:408-15.
  13. Butcher H, Quenzel CJE, Breziner L, Mettes J, Wilhite BA, Bossard P. Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming. International Journal of Hydrogen Energy. 2014.
  14. Baek SM, Kang JH, Lee K-J, Nam JH. A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications. International Journal of Hydrogen Energy. 2014;39:9180-92.
  15. Jeon SW, Yoon WJ, Baek C, Kim Y. Minimization of hot spot in a microchannel reactor for steam reforming of methane with the stripe combustion catalyst layer. International Journal of Hydrogen Energy. 2013;38:13982-90.
  16. Li Y, Wang Y, Zhang X, Mi Z. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. International Journal of Hydrogen Energy. 2008;33:2507-14.
  17. Lu Y, Zhao L, Guo L. Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China. International Journal of Hydrogen Energy. 2011;36:14349-59.
  18. Kangvansura P, Schulz H, Suramitr A, Poo-arporn Y, Viravathana P, Worayingyong A. Reduced cobalt phases of ZrO2 and Ru/ZrO2 promoted cobalt catalysts and product distributions from Fischer–Tropsch synthesis. Materials Science and Engineering: B. 2014;190:82-9.
  19. Steynberg A, Dry M. Fischer-Tropsch Technology: Elsevier; 2004.
  20. Zhu X, Lu X, Liu X, Hildebrandt D, Glasser D. Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chemical Engineering Journal. 2014;247:75-84.
  21. Zhao Y-H, Wang Y-J, Hao Q-Q, Liu Z-T, Liu Z-W. Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology. 2014.
  22. Park N, Kim J-R, Yoo Y, Lee J, Park M-J. Modeling of a pilot-scale fixed-bed reactor for iron-based Fischer–Tropsch synthesis: Two-dimensional approach for optimal tube diameter. Fuel. 2014;122:229-35.
  23. Díaz JA, Akhavan H, Romero A, Garcia-Minguillan AM, Romero R, Giroir-Fendler A, et al. Cobalt and iron supported on carbon nanofibers as catalysts for Fischer–Tropsch synthesis. Fuel Processing Technology. 2014;128:417-24.
  24. Prieto G, De Mello MIS, Concepción P, Murciano R, Pergher SBC, Martı́nez An. Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis. 2015;5:3323-35.
  25. Qin S, Zhang C, Wu B, Xu J, Xiang H, Li Y. Fe-Mo Catalysts with High Resistance to Carbon Deposition During Fischer–Tropsch Synthesis. Catalysis letters. 2010;139:123-8. 
  • تاریخ دریافت: 03 اردیبهشت 1401
  • تاریخ پذیرش: 03 اردیبهشت 1401