بررسی مطالعات آزمایشگاهی و تئوری بهبود ضریب رسانش گرمایی نانوسیالات

نوع مقاله : مقاله ترویجی

نویسندگان

گروه مهندسی گاز، دانشکده نفت اهواز، دانشگاه صنعت نفت، اهواز، صندوق پستی ۶۳۴۳۱

چکیده

سیالات انتقال حرارتی مرسوم، مانند آب، روغن و اتیلن گلیکول که در صنایع مختلفی مانند فرآیندهای شیمیایی، تبرید، فرآیندهای سرد و گرم کردن، حمل‌و‌نقل، نیروگاه­ها و صنایع با اندازه‌ای در حد میکرومتر که خصوصیات انتقال حرارتی ضعیفی دارند، استفاده می­شوند. افزایش ضریب رسانش گرمایی ایده­ی کلیدی برای بهبود ویژگی­های انتقال حرارتی سیالات مرسوم است. از آنجایی‌که ذرات جامد دارای ضریب رسانش گرمایی بیشتری نسبت به سیال پایه هستند، انتظار می­رود که معلق­سازی ذرات ریز جامد در سیال پایه، باعث بهبود ضریب رسانش گرمایی شود. سوسپانسیون رقیق حاوی ذرات نانومتری را نانوسیال می­گویند که این دسته از سیالات خواص انتقال حرارتی را افزایش داده­اند و به نظر می­رسند که گزینه امیدبخشی برای سیستم­های گرمایی نسل بعدی باشند. به‌همین منظور پارامترهای مختلفی که بر روی ضریب رسانش گرمایی نانوسیالات اثر می­گذارند بررسی شده است و حتی مدل­های مختلفی هم برای پیش‌بینی ضریب رسانش گرمایی آن­ها ارائه شده است اما هنوز مدل واحدی که بتواند همه­ی مکانیزم­های احتمالی انتقال حرارت را برای نانوسیالات درنظر بگیرد وجود ندارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Review on Theoretical and Experimental Studies on Improving the Thermal Conductivity Coefficient of Nanofluids

نویسندگان [English]

  • Masoud Bahrami
  • Somayeh Alidoust

Department of Gas Engineering, Petroleum University of Technology(RIPI), P.O. Box 63431, Ahvaz, Iran

چکیده [English]

Conventional heat transfer fluids, such as water, oil and ethylene glycol, are used in a variety of industries, such as chemical processes, refrigeration, cooling and heating processes, transportation, power plants and micro-sized industries with a low-heat transfer characteristic. Increasing the coefficient of thermal conductivity is the key idea to improving the heat transfer properties of conventional fluids. Solid particles have higher thermal conductivity than the base fluid, as a consequence it is expected that the heat transfer coefficient could be increased by suspending solid particles in the base fluid. Nanofluids, which are diluted suspensions containing nano-particles, seem to be a hopeful option for next generation of thermal systems. However there are several researches reported the various parameters affecting heat transfer coefficient of nanofluids.  In spite of several models have been proposed to predict their thermal conductivity coefficient, still a unique model that can predict all possible heat transfer mechanisms of nanoparticles is lacking.

کلیدواژه‌ها [English]

  • Nanofluids
  • Thermal conductivity coefficient
  • Heat transfer
  1. J. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon press, 1881.
  2. S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Int. Mech. Eng. Congr. Expo., vol. 66, no5, pp. 99–105, 1995.
  3. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001.
  4. P. C. Mishra, S. K. Nayak, and S. Mukherjee, “Thermal Conductivity of Nanofluids-An Extensive Literature Review,” Int. J. Eng. Res. Technol., vol. 2, no. 9, pp. 734–745, 2013.
  5. G. Paul, M. Chopkar, I. Manna, and P. K. Das, “Techniques for measuring the thermal conductivity of nanofluids: A review,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1913–1924, 2010.
  6. Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009.
  7. M. S. Liu, M. C. C. Lin, C. Y. Tsai, and C. C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” Int. J. Heat Mass Transf., vol. 49, no. 17–18, pp. 3028–3033, 2006.
  8. T. Hong, H. Yang, and C. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” J. Appl. Phys., vol. 97, pp. 64311-1–4, 2005.
  9. Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” vol. 21, pp. 58–64, 2000.
  10. S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids,” vol. 44, pp. 367–373, 2005.
  11. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” J. Appl. Phys., vol. 91, no. 7, p. 4568, 2002.
  12. C.-W. Nan, G. Liu, Y. Lin, and M. Li, “Interface effect on thermal conductivity of carbon nanotube composites,” Appl. Phys. Lett., vol. 85, no. 16, p. 3549, 2004.
  13. Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids),” Int. J. Heat Mass Transf., vol. 49, no. 1–2, pp. 240–250, 2006.
  14. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe,” Int. J. Heat Mass Transf., vol. 50, no. 11–12, pp. 2272–2281, 2007.
  15. D. Oh, A. Jain, J. K. Eaton, K. E. Goodson, and J. Sik, “Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3 x method,” vol. 29, pp. 1456–1461, 2008.
  16. C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” J. Appl. Phys., vol. 99, no. 8, 2006.
  17. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” J. Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003.
  18. H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2931–2933, 2003.
  19. W. Roetzel, S. Prinzen, and Y. Xuan, “Measurement of thermal diffusivity using temperature oscillations,” Therm. Conduct., vol. 21, pp. 201–207, 1990.
  20. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2O 3) thermal conductivity enhancement,” Appl. Phys. Lett., vol. 87, no. 15, pp. 1–3, 2005.
  21. R. Prasher, I. Corporation, W. Chandler, and V. Boule, “Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions ( Nanofluid ),” pp. 8–12, 2006.
  22. D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids,” Curr. Appl. Phys., vol. 9, no. 1, pp. 131–139, 2009.
  23. S. W. Lee, S. D. Park, S. Kang, I. C. Bang, and J. H. Kim, “Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications,” Int. J. Heat Mass Transf., vol. 54, no. 1–3, pp. 433–438, 2011.
  24. S. Harish et al., “Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion,” Mater. Express, vol. 2, no. 3, pp. 213–223, 2012.
  25. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, “The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures,” J. Nanoparticle Res., vol. 12, no. 4, pp. 1469–1477, 2010.
  26. W. Duangthongsuk and S. Wongwises, “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids,” Exp. Therm. Fluid Sci., vol. 33, no. 4, pp. 706–714, 2009.
  27. S. Lee, S.-S. Choi, S. Li  and, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999.
  28. M. Chopkar, S. Sudarshan, P. K. Das, and I. Manna, “Effect of Particle Size on Thermal Conductivity of Nanofluid,” Metall. Mater. Trans. A, vol. 39, no. 7, pp. 1535–1542, 2008.
  29. D.-H. Yoo, K. S. Hong, and H.-S. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochim. Acta, vol. 455, no. 1, pp. 66–69, 2007.
  30. H. Chen, S. Witharana, Y. Jin, C. Kim, and Y. Ding, “Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology,” Particuology, vol. 7, no. 2, pp. 151–157, 2009.
  31. M. Xing, J. Yu, and R. Wang, “Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids,” Int. J. Therm. Sci., vol. 104, pp. 404–411, 2016.
  32. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, “The effect of particle size on the thermal conductivity of alumina nanofluids,” J. Nanoparticle Res., vol. 11, no. 5, pp. 1129–1136, 2009.
  33. H. Xie, H. Lee, W. Youn, and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” J. Appl. Phys., vol. 94, no. 8, pp. 4967–4971, 2003.
  34. Y. J. Hwang et al., “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” vol. 6, pp. 1068–1071, 2006.
  35. M.-S. Liu, M. Ching-Cheng Lin, I.-T. Huang, and C.-C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” Int. Commun. Heat Mass Transf., vol. 32, no. 9, pp. 1202–1210, 2005.
  36. R. Agarwal, K. Verma, N. K. Agrawal, R. K. Duchaniya, and R. Singh, “Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids,” Appl. Therm. Eng., vol. 102, pp. 1024–1036, 2016.
  37. X. Zhang, H. Gu, and M. Fujii, “Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles,” Exp. Therm. Fluid Sci., vol. 31, no. 6, pp. 593–599, 2007.
  38. S. M. S. Murshed, K. C. Leong, and C. Yang, “Investigations of thermal conductivity and viscosity of nanofluids,” vol. 47, pp. 560–568, 2008.
  39. [39]   Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes ( CNT nanofluids ),” vol. 49, pp. 240–250, 2006.
  40. [40]   R. H. Davis, “The effective thermal conductivity of a composite material with spherical inclusions,” Int. J. Thermophys., vol. 7, no. 3, pp. 609–620, 1986.
  41. [41]   R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Com Ponent Systems,” I EC Fundumentals, vol. 1, no. 3, pp. 187–191, 1959.
  42. [42]   D. J. Jeffrey, “Conduction Through a Random Suspension of Spheres,” Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 335, no. 1602, pp. 355–367, 1973.
  43. [43]   J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanoparticle Res., vol. 6, no. 6, pp. 577–588, 2004.
  44. [44]   W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model,” J. Nanoparticle Res., vol. 5, no. 1–2, pp. 167–171, 2003.
  45. [45]   Q. Xue and W. M. Xu, “A model of thermal conductivity of nanofluids with interfacial shells,” Mater. Chem. Phys., vol. 90, no. 2–3, pp. 298–301, 2005.
  46. [46]   W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” vol. 51, pp. 1431–1438, 2008.
  47. [47]   Y. Xuan, Q. Li, and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AIChE J., vol. 49, no. 4, pp. 1038–1043, 2003.
  48. [48]   B. Wang, L. Zhou, and X. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” vol. 46, pp. 2665–2672, 2003.
  49. [49]   D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkerper aus isotropen Substanzen,” Ann. Phys., vol. 421, no. 2, pp. 160–178, 1937.
  • تاریخ دریافت: 03 اردیبهشت 1401
  • تاریخ پذیرش: 03 اردیبهشت 1401