تعادل شیمیایی و فازی در فرایند استریفیکاسیون استیک اسید با اتانول در حضور دی‌اکسیدکربن فوق ‌بحرانی

نوع مقاله : مقاله ترویجی

نویسندگان

1 کارشناس واحد نظارت بر نصب شرکت صنایع پنتان شیمی، تهران، ایران

2 کارشناس ارشد مهندسی شیمی، دانشکدۀ فنی و مهندسی، دانشگاه مهندسی فناوری‌های نوین قوچان، قوچان، خراسان رضوی، ایران

3 استادیار، گروه مهندسی شیمی، دانشگاه مهندسی فناوری‌های نوین قوچان، قوچان، خراسان رضوی، ایران

4 کارشناس HSE، پتروشیمی اروند، منطقۀ ویژۀ اقتصادی ماهشهر، خوزستان، ایران

چکیده

سیالات فوق ‌بحرانی به‌خاطر دارابودن طبیعت قابل‌تنظیمشان کاربردهای بسیاری در استخراج و فرایندهای واکنشی و جداسازی دارند. ازآنجایی‌که کاربردهای سیالات فوق ‌بحرانی در حال افزایش و استفاده از آن‌ها در حال تجاری‌شدن است، فهم بنیانی رفتار فازی این سیالات نیز مورد توجه بیشتری قرار گرفته است. با توجه به دشواری و هزینه‌بر بودن اندازه‌گیری‌های تجربی، با استفاده از مدل‌های ترمودینامیکی می‌توان تعداد داده‌های آزمایشگاهی موردنیاز را برای یک مسئلۀ موردطراحی مشخص کاهش داد. در پژوهش حاضر از مدل‌های درجه‌سوم معادلات حالت به‌همراه قوانین اختلاط استاندارد واندروالس استفاده شده و با استفاده از داده‌های بحرانی مواد، تعادل فازی و شیمیایی برای فرایند استریفیکاسیون استیک اسید با اتانول در حضور CO2 فوق ‌بحرانی مورد مطالعه قرار گرفت. با توجه به نتایج می‌توان گفت که هر دو مدل SRK و PR برای پیش‌بینی فرایند شامل CO2 فوق ‌بحرانی به‌خوبی عمل نموده‌اند. هر دو مدل وجود دو فاز مایع و گاز نسبتاً متراکم را در شرایط موردبررسی ۳۳۳K و bar ۵۸/۶ پیش‌بینی نموده‌اند که با نتایج تجربی کاملاً مطابقت دارد. مقادیر ثابت تعادلی به‌دست‌آمده توسط هر دو مدل در دو دما نیز در بیشترین حالت 4درصد با مقادیر تجربی اختلاف داشته‌اند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Chemical and Phase Equilibria in the Process of Esterification of Acetic Acid with Ethanol in the Presence of Supercritical Carbon Dioxide

نویسندگان [English]

  • Ali Reza Pour Parvaneh 1
  • Mahmood Mohammadi 2
  • Majid Mahdavian 3
  • Iman Yaghoub Khah 4

1 Installation Supervisor, Pentan Chemical Company, Tehran, Iran

2 MSc in Chemical Engineering, Faculty of Engineering, Quchan University of New Technologies Engineering , Quchan, Iran

3 Assistant Professor, Department of Chemical Engineering, Quchan University of New Technologies Engineering, Quchan, Iran

4 HSE Expert, Arvand Petrochemical, Mahshahr Special Economic Zone

چکیده [English]

Due to their adaptable nature, supercritical fluids have many applications in extraction, separation and reactive processes. Since the applications of supercritical fluids are being commercialized and their use is increasing, a profound understanding of the phasic behavior of these fluids is receiving attention. Due to the difficult and costly experimental measurements, using thermodynamic models can reduce the number of needed experimental data for a particular design. In this paper, cubic standard equations of state with the Van Der Waals mixing rules and materials critical data was used to study chemical and phase equilibria for the esterification of acetic acid with ethanol in the presence of supercritical CO2. The results show that both SRK and PR models successfully predicts processes containing supercritical CO2. Both models relatively have predicted two dense gas and liquid phases in 333 K and 58.6 bar condition, which is in line with experimental results. The equilibrium constants obtained from both models in 355 & 358 K had up to 4% difference with experimental values.

کلیدواژه‌ها [English]

  • Chemical Equilibria
  • Phase Equilibria
  • Esterification. Acetic Acid
  • Ethanol
  • Supercritical CO2
  1. Clifford, Anthony, and Tony Clifford, Fundamentals of supercritical fluids, Oxford University Press, 1999.
  2. Eckert, Charles A., "Supercritical fluids as solvents for chemical and materials processing", Nature 383 (1996): 313-318.
  3. "Past, present, and possible future applications of supercritical fluid extraction technology", Journal of chemical education 73, no. 12 (1996): 1163.
  4. Dinjus, E., R. Fornika, and M. Scholz, "Organic chemistry in supercritical fluids", Chemistry under extreme or non-classical conditions (R. Eldik and C.D. Hobbard, Eds.) (1996): 219-272.
  5. Taylor, Larry T., Supercritical fluid extraction, Vol. 4. Wiley-Interscience, 1996.
  6. McHugh, Mark, and Val Krukonis, Supercritical fluid extraction: principles and practice, Elsevier, 2013.
  7. Lee, Milton L., and Karin E. Markides, eds., Analytical supercritical fluid chromatography and extraction, Provo, UT: Chromatography Conferences, 1990.
  8. Perrut, Michel, "Supercritical fluid applications: industrial developments and economic issues", Industrial & engineering chemistry research 39, no. 12 (2000): 4531-4535.
  9. Fornari, Rosa E., Paolo Alessi, and Ireneo Kikic, "High pressure fluid phase equilibria: experimental methods and systems investigated (1978–1987)", Fluid Phase Equilibria 57, no. 1 (1990): 1-33.
  10. Dohrn, Ralf, and Gerd Brunner, "High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988–1993)", Fluid Phase Equilibria 106, no. 1 (1995): 213-282.
  11. Arai, Kunio, and Tadafumi Adschiri, "Importance of phase equilibria for understanding supercritical fluid environments", Fluid Phase Equilibria 158 (1999): 673-684.
  12. Solórzano, Gabriela Illiann Burgos, "Supercritical fluid technology: computational and experimental equilibrium studies and design of supercritical extraction processes", PhD diss., University of Notre Dame, 2004.
  13. Brennecke, Joan F., and Charles A. Eckert, "Phase equilibria for supercritical fluid process design", AIChE Journal 35, no. 9 (1989): 1409-1427.
  14. Rizvi, Syed SH, A. L. Benado, J. A. Zollweg, and J. A. Daniels, "Supercritical fluid extraction: fundamental principles and modeling methods", Food technology (USA) (1986).
  15. Mackay, Michael E., and Michael E. Paulaitis, "Solid solubilities of heavy hydrocarbons in supercritical solvents", Industrial & Engineering Chemistry Fundamentals 18, no. 2 (1979): 149-153.
  16. Prausnitz, John M., Rudiger N. Lichtenthaler, and Edmundo Gomes de Azevedo, Molecular thermodynamics of fluid-phase equilibria, Pearson Education, 1998.
  17. Hong, Glenn T., Michael Modell, and Jefferson W. Tester, "Binary phase diagrams from a cubic equation of state", Chemical engineering at supercritical fluid conditions (1983): 263.
  18. Ellison, Timothy Kirk, "Supercritical fluids: kinetic solvent effect and the correlation of solid-fluid equilibria", PhD diss., University of Illinois at Urbana-Champaign, 1986.
  19. Hess, Barry Samuel, "Supercritical fluids: measurement and correlation studies of model coal compound solubility and the modeling of solid-liquid-fluid equilibria", Illinois Univ., Urbana (USA), 1987.
  20. Kurnik, Ronald T., Samuel J. Holla, and Robert C. Reid, "Solubility of solids in supercritical carbon dioxide and ethylene", Journal of Chemical and Engineering Data 26, no. 1 (1981): 47-51.
  21. Schmitt, William J., and Robert C. Reid, "Solubility of monofunctional organic solids in chemically diverse supercritical fluids", Journal of Chemical and Engineering Data 31, no. 2 (1986): 204-212.
  22. Sadus, Richard J., "Calculating critical transitions of fluid mixtures: theory vs. experiment", AIChE journal 40, no. 8 (1994): 1376-1403.
  23. Perrot, Pierre, A to Z of Thermodynamics, Oxford University Press, 1998.
  24. Peng, Ding-Yu, and Donald B. Robinson, "A new two-constant equation of state", Industrial & Engineering Chemistry Fundamentals 15, no. 1 (1976): 59-64.
  25. Mathias, Paul M., "A versatile phase equilibrium equation of state", Industrial & Engineering Chemistry Process Design and Development 22, no. 3 (1983): 385-391.
  26. Soave, Giorgio, "Equilibrium constants from a modified Redlich-Kwong equation of state", Chemical Engineering Science 27, no. 6 (1972): 1197-1203.
  27. Calvar, N., B. Gonzalez, and A. Dominguez, "Esterification of acetic acid with ethanol: Reaction kinetics and operation in a packed bed reactive distillation column", Chemical Engineering and Processing: Process Intensification 46, no. 12 (2007): 1317-1323.
  28. Groggins, Philip Herkimer, "Unit processes in organic synthesis", (1958).
  29. Bock, Heiko, Mohammed Jimoh, and Günter Wozny, "Analysis of reactive distillation using the esterification of acetic acid as an example", Chemical engineering & technology 20, no. 3 (1997): 182-191.
  30. Stateva, Roumiana P., and William A. Wakeham, "Phase equilibrium calculations for chemically reacting systems", Industrial & engineering chemistry research 36, no. 12 (1997): 5474-5482.
  31. Blanchard, Lynnette A., and Joan F. Brennecke, "Esterification of acetic acid with ethanol in carbon dioxide", Green Chem. 3, no. 1 (2001): 17-19.
  32. Reid, Robert C., John M. Prausnitz, and Bruce E. Poling, The properties of gases and liquids, 1987.
  33. Suzuki, Tatsuru, Naoki Tsuge, and Kunio Nagahama, "Solubilities of ethanol, 1-propanol, 2-propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K", Fluid Phase Equilibria 67 (1991): 213-226.
  34. Laugier, S., D. Richon, and H. Renon, "Simultaneous determination of vapor—liquid equilibria and volumetric properties of ternary systems with a new experimental apparatus", Fluid Phase Equilibria 54 (1990): 19-34.
  35. Wiebe, R., and V. L. Gaddy, "Vapor phase composition of carbon dioxide-water mixtures at various temperatures and at pressures to 700 atmospheres", Journal of the American Chemical Society 63, no. 2 (1941): 475-477.
  36. Brunner, Gerd, Jens Teich, and Ralf Dohrn, "Phase equilibria in systems containing hydrogen, carbon dioxide, water and hydrocarbons", Fluid Phase Equilibria 100 (1994): 253-268.
  37. Wagner, Zdeněk, and Jan Pavlíček, "Vapour-liquid equilibrium in the carbon dioxide—ethyl acetate system at high pressure", Fluid phase equilibria 97 (1994): 119-126.
  38. Gmehling, J., U. Onken, W. Arlt, P. Grenzheuser, U. Weidlich, B. Kolbe, and J. Rarey, Chemistry Data Series, Volume I, (1995).
  39. McDonald, Conor M., and Christodoulos A. Floudas, "Global optimization and analysis for the Gibbs free energy function using the UNIFAC, Wilson, and ASOG equations", Industrial & engineering chemistry research 34, no. 5 (1995): 1674-1687.
  40. Wilson, Grant M., "Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing", Journal of the American Chemical Society 86, no. 2 (1964): 127-130.
  41. SUZUKI, ISAO, HIROMASA KOMATSU, and MITSUHO HIRATA, "Formulation and prediction of quaternary vapor-liquid equilibria accompanied by esterification", Journal of Chemical Engineering of Japan 3, no. 2 (1970): 152-157.
  42. Stull, Daniel Richard, Edgar F. Westrum, and Gerard Clarence Sinke, The chemical thermodynamics of organic compounds, 1969.
  43. Lee, Liang-Sun, Wen-Chuan Chen, and Jin-Feng Huang, "Experiments and correlations of phase equilibria of ethanol-ethyl acetate-water ternary mixture", Journal of chemical engineering of Japan 29, no. 3 (1996): 427-438.
  44. Panagiotopoulos, Athanassios Z., Richard C. Willson, and Robert C. Reid, "Phase equilibria in ternary systems with carbon dioxide, water and carboxylic acids at elevated pressures", Journal of Chemical and Engineering Data 33, no. 3 (1988): 321-327.
  45. Laugier, S., D. Richon, and H. Renon, "Simultaneous determination of vapor—liquid equilibria and volumetric properties of ternary systems with a new experimental apparatus", Fluid Phase Equilibria 54 (1990): 19-34.
  46. TAKISHIMA, SHIGEKI, Kozo SAIKI, KUNIO ARAI, and SHOZABURO SAITO, "Phase equilibria for CO2-C2H5OH-H2O system", Journal of chemical engineering of Japan 19, no. 1 (1986): 48-56.
  47. Yoon, Ji-Ho, Huen Lee, and Bong Hyun Chung, "High pressure three-phase equilibria for the carbon dioxide-ethanol-water system", Fluid Phase Equilibria 102, no. 2 (1994): 287-292.
  • تاریخ دریافت: 04 اردیبهشت 1401
  • تاریخ پذیرش: 04 اردیبهشت 1401