بررسی آزمایشگاهی اثر خواص شیمی سطح گرافن بر فرآیند تشکیل هیدرات متان و میزان ذخیره‌سازی و پایداری آن

نوع مقاله : مقاله ترویجی

نویسنده

عضو هیئت علمی پژوهشگاه صنعت نفت، پژوهشگاه صنعت نفت، تهران، ایران، کدپستی ۱۳۷-۱۴۶۶۵

چکیده

در این تحقیق فرآیند تشکیل هیدرات متان در حضور گرافن و گرافن اکسید بررسی شد. بطوریکه ابتدا نانو صفحات گرافنی توسط فرآیند CVD بر روی بستر مس رشد داده و سنتز شد و با آنالیزهای XRD، FTIR و AFM ساختار آن مورد مطالعه قرار گرفت. سپس نانوسیالات پایدار حاوی گرافن و گرافن اکسید شده با غلظت ۱٪ وزنی تهیه شده و در فرآیند تشکیل هیدرات گازی در ۱۰۰psig و دمای  C° ۴استفاده شد. به‌طوری‌که نانو سیال حاوی گرافن/سورفکتنت ضمن کاهش زمان القا و انحلال به ترتیب تا ۴۶/۰٪ و ۶۰/۹٪ نسبت به نمونه آب خالص، توانسته میزان ذخیره‌سازی را تا ۵۷/۶٪ افزایش دهد. این امر به دلیل افزایش ۴۰ برابری انحلال اولیه متان در نانو سیال نسبت به آب بوده که این امر حاصل از کاهش مقاومت انتقال جرم در اثر حضور سورفکتنت و همچنین وجود سایت‌های فعال ناهمگن بیشتر جهت هسته‌زایی است. همچنین مشاهده شد علی‌رغم اینکه پایداری هیدرات‌های تشکیل شده در حضور گرافن کمتر از گرافن اکسید است، اما بعد از رسیدن به پایداری، میزان متان ذخیره شده در هیدرات گرافن از این مقدار برای نمونه شاهد ۳۴/۹ حجم بیشتر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental Study on Affect of Graphene Surface Chemistry on the Process of Methane Hydrate Formation and its Storage and Stability

نویسنده [English]

  • Ahmad Ghozatloo

Faculty member of Research Institute of Petroleum Industry (RIPI), Tehran, Iran

چکیده [English]

In this research, the process of formation of methane hydrates was investigated in the presence of graphene and graphene oxide. First, the graphene nano sheets synthesized and growth on the copper substrate by the CVD method and It was structure was evaluated by XRD, FTIR and AFM analysis. Then, 1% wt. of stable graphene and graphene oxidized nanofluids were prepared and used in the process of gas hydrates formation at 1000 psig and at 4 °C. As the nanofluid containing graphene / surfactant, while reducing the Induction and dissolution time to 46.0% and 60.9% respectively, compared to the pure water, could increase the storage rate to 56.7%. This is due to an increase of 40 times the initial dissolution of methane in the nanofluid than water, which is due to the reduction of the mass transfer resistance due to the presence of surfactant and the presence of heterogeneous active sites for nucleation. It was observed, however, the stability of hydrates in presence of graphene is less than graphene oxide, but after reaching the stability, the amount of methane deposited in graphene hydrate is greater than control sample of 34.9.

کلیدواژه‌ها [English]

  • Methane Hydrates
  • Graphene
  • Surface Properties
  • Oxidation
  • Induction
  • Stability
  • Storage
  1. Sloan.E.D, Clathrate Hydrates of Natural Gases, Third ed, Mrcel, New York, (2008).
  2. Nasrifar K.H., Moshfeghian M., A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol, Chem. Thermodynamics, 33 (2001) 999–1014.
  3. Khakhor, A.A., Gudmundsson, J.S., Sloan, E.D., Gas storage in structure H hydrates, Fluid Phase Equiliria, 150 (1998) 383-392.
  4. Zhang C.S., Fan S.S., Liang D.Q., Guo K.H.,Effect of additives on formation of natural gas hydrates, Fuel, 83 (2004) 2115–2121.
  5. Yoshikawa K., Y. Kondo, T. Kimura, T. Fujimoto, U.S. patent, Production method for hydrate and device for proceeding the same, 1 (2003) 12-23.
  6. Manteghian M., Mousavi Safavi S.M., Mohammadi A., The equilibrium conditions, hydrate formation and dissociation rate and storage capacity of ethylene hydrate in presence of 1,4-dioxane, Chemical Engineering, 217 (2013) 379–384.
  7. Park S., An E., Lee S., Chun W., Kim N., Characteristics of methane hydrate formation in carbon nanofluids, Industrial and Engineering Chemistry, 18 (2013) 443-448
  8. Zhong Y., Rogers R.E, Surfactant efects on gas hydrate formation, Chemical Engineering Science, 55 (2000) 4175-4187.
  9. Sun Z.G., Ma R., Wang R., Guo K., Fan S., Experimental studying of additives effects on gas storage in hydrate, Energy Flues, 17 (2003) 1180-1185.
  10. Ando N., Kuwabara Y., Mori Y.H., Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and micelle-forming surfactants, Chemical Engineering Science, 73 (2012) 79–85.
  11. Ganji H., Manteghian M., Sadaghiani K., Omidkhah M. R., Rahimi mofrad H., Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel, 86 (2007) 434-441.
  12. Lin W., Chen G.J., Sun C.Y., Guo X.Q., Wu Z.K., Liang M.Y., Effect of Surfactants on The Formation and Dissociation Behavior of Methane Hydrate, Chem. Eng. Sci., 59 (2004) 4449-4455.
  13. Ganandran N, R. Amin, The Effect of Hydrotropes on Gas Hydrates Formation, J Petrol Sci. Eng., 40 (2003) 37-46.
  14. Han X., S. Wang, X. Chen, F. Liu, Surfactant Accelerates Gas Hydrate Formation, 4th international Conference on Gas Hydrates, Yokohama, (2002).
  15. Li J., Liang D., Guo k., Wang R., Fan S., Formation and dissociation of HFC134a gas hydrate in nano-copper suspension, Energy Conversion Management, 47 (2006) 201-210.
  16. Arjang S., Manteghian M., Mohammadi A. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa, Chemical Engineering Research and Design, 91, 6 (2013) 1050-1054.
  17. Ryu Y.B., Lee J.D., Kim Y.S., Yoon S.Y., Lee M.S., Influece of nanosized materials on the formation of methan hydrate, in proceeding if the 6th International conference on Gas Hydrates (2008).
  18. Pinnelli S.R. Prasad, Vangala Dhanunjana Chari, Deepala V.S.G.K. Sharma, Sarabu Ramana Murthy, Effect of silica particles on the stability of methane hydrates, Fluid Phase Equilibria, 318 (2012) 110–114
  19. Ghozatloo A., Shariaty-Niasar M., Rashidi A.M., Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability, International Communications in Heat and Mass Transfer, 42 (2013) 89–94
  20. Tessy Theres Baby and S Ramaprabhu, Investigation of thermal and electrical conductivity of grapheme based nanofluids, applied physics 108, 124308 (2010) 1-8.
  21. Chen L. and Xie H, Silicon Oil based multi walled carbon nano tubes nano fluid with optimized thermal conductivity enhancement, Colloids and surface A: Physiochemical and Engineering Aspects, 30402 (2009) 633-636.
  22. Lo C., Zhang J., Somasundaran P., Lee J.W., Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy, Colloid and Interface Science, 376 (2012) 173–176.
  23. Ahmad Ghozatloo, Mojtaba Shariaty-Niasar and Ali Morad Rashidi, Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability, International Communications in Heat and Mass Transfer 42 (2013) 89–94.
  24. Ghozatloo A., Rashidi A.M., Shariaty-Niasar M., Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids, International Communications in Heat and Mass Transfer, 54 (2014) 1–7.
  25. Guoxiu W., Juan Y., Park J., Xinglong G., Wang B., Liu H., Yao J., Facile Synthesis and Characterization of Graphene Nano sheets, Phys. Chem. C, 112 (2008) 8192–8195.
  26. Park O., Jeevananda T., Kim N.H., Kim S., and Hee L.J., Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Materialia, 60 (2009) 551–554.
  27. Dyke C.A. and Tour J.M., Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Appli-cations, Physical Chemistry, 108, 51 (2004) 11151-11159.
  28. Bahr J.L., Yang J., Kosynkin D.V., Bronikowski M.J., Smalley R., Tour J.M., Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Dia-zonium Salts: A Bucky Paper Electrode, American Chemical Society, 123, 27 (2001) 6536-6542.
  29. Yudianti R., Onggo H., Sudirman, Saito Y., Iwata T., Azuma J-i., Analysis of functional group sited on multi-wall carbon Nanotube surface, The Open Materials Science, 5 (2011) 242-247.
  30. Li C.C., Lin J.L., Huang S.J., Lee J.T., and Chen C.H., A new and acid exclusive method for dispersing carbon multi walled nanotubes in aqueous suspensions, Colloids Surf. A: Physicochem, Eng. Aspects, 297 (2007) 275-281.
  31. Dyke C.A. and Tour J.M., Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Appli-cations, Physical Chemistry, 108, 51 (2004) 11151-11159.
  32. Espitia-Cabrera I., Orozco-Hernández H.D., Bartolo-Pérez P., Contreras-García M.E., Nanostructure characterization in single and multi layer yttria stabilized zirconia films using XPS, SEM, EDS and AFM, Surface & Coatings Technology, 203 (2008) 211–216.
  33. Hsu H.C., Shown I., Wei H.Y., Chang Y.C., Du H.Y., Lin Y.G., Tseng C.A., Wang C.H., Chen L.C., Lin Y.C., Chen L.H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion, Nanoscale, 5 (2013) 262-268.
  34. Giannazzo F., Sonde S., Raineri V., Rimini E., Screening length and quantum capacitance in graphene by scanning probe microscopy, Nano Lett., 9 (2009) 23-33.
  35. Zhu W., Low T., Perebeinos V., Bol A.A., Zhu Y., Yan H., Tersoff J., Avouris P., Structure and electronic transport in graphene wrinkles, Nano Lett., 12 (2012) 3431–3436.
  • تاریخ دریافت: 04 اردیبهشت 1401
  • تاریخ پذیرش: 04 اردیبهشت 1401