برآورد میزان انتشار گازهای گلخانه‌ای در دو پالایشگاه شهید هاشمی نژاد و فجر جم و ارائه راهکارهای عملیاتی جهت کاهش انتشار در آن‌ها

نوع مقاله : مقاله ترویجی

نویسندگان

1 پژوهشکده توسعه و بهینه‌سازی فناوری‌های انرژی، پژوهشگاه صنعت نفت، تهران، ایران

2 شرکت انرژی‌های تجدید پذیر مهر، تهران، ایران

3 مدیریت پژوهش و فناوری، شرکت ملی گاز ایران، تهران، ایران

4 شرکت پالایش گاز شهید هاشمی نژاد، سرخس، مشهد، ایران

چکیده

امروزه پالایشگاه‌های گاز طبیعی به‌منظور خالص‌سازی گاز طبیعی و بهینه کردن خواص گاز استخراجی از چاه‌های گاز جهت کاربردهای مختلفی همچون مصارف خانگی با سرعت بیشتری درحال‌توسعه می‌باشند. هر پالایشگاه گاز از مجموعه‌ای از واحدهای فرآیندی تشکیل شده است که هر یک از آن‌ها می‌توانند عاملی جهت انتشار گازهای گلخانه‌ای به محیط‌زیست باشد؛ بنابراین هدف این مقاله ابتدا بررسی، مطالعه و برآورد میزان انتشار گازهای گلخانه‌ای از واحدهای فرآیندی موجود در دو پالایشگاه شهید هاشمی نژاد و فجر جم و سپس ارائه راه‌کارهایی جهت بهبود عملکرد و کاهش انتشار دی‌اکسید کربن در این پالایشگاه‌ها است. به‌طورکلی منابع انتشار گازهای گلخانه‌ای به سه بخش احتراقی، منابع فرآیندی و انتشار فرار تقسیم‌بندی شده است. در بخش احتراقی از چهار روش موازنه‌ی جرمی (بر اساس میزان و ترکیب سوخت)، روش آنالیز گازهای خروجی دودکش (با استفاده از دو متد جداگانه) و روش ضرایب انتشار عمومی برای هر دو پالایشگاه استفاده‌شده است. مقایسه نتایج این چهار روش برای بویلرهای این دو پالایشگاه نشان می‌دهد که روش موازنه‌ی جرمی در محاسبه‌ی انتشار CO2 و ضریب انتشار برای محاسبه‌ی انتشار CH4 نتایج مناسب‌تری ارائه خواهند داد. همچنین انتشار فرار مربوط به نشتی تجهیزات و انتشار فرایندی مربوط به تصفیه فاضلاب مربوط به این دو پالایشگاه نیز محاسبه و برآورد شده است.
نتایج برآورد انتشار گازهای گلخانه‌ای در این دو پالایشگاه نشان می‌دهند که فلر کردن گازها، دی‌اکسید کربن موجود در گاز خام ورودی به پالایشگاه و مصرف سوخت در تجهیزات تبدیل انرژی، سه منبع عمده انتشار گازهای گلخانه‌ای به‌حساب می‌آیند؛ بنابراین 11 پروژه جهت بهبود بازده و کاهش انتشار دی‌اکسید کربن در این دو پالایشگاه حول محور کاهش فلرینگ، بهبود راندمان انرژی (در هر سه بخش تولید، انتقال و مصرف) و جذب CO2 از گازهای خروجی از دودکش ارائه و ارزیابی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Estimation of Greenhouse Gas Emissions in two Refineries of Hasheminejad and Fajr Jam and Providing Operational Solutions to Reduce Emissions

نویسندگان [English]

  • Kazem Kashefi 1
  • Tohid Nodle 2
  • Fatemeh Goodarzvand-Chegini 1
  • Fatemeh Zajakaniha 3
  • Ali Asghar Mahjoubi 4

1 Optimization & Development of Energy Technologies Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran

2 Renewable Energy Company of Mehr, Tehran, Iran

3 Research and Technology Management of National Iranian Gas Company, Tehran, Iran

4 Hasheminejad Gas Refining Company,, Sarakhs, Mashhad, Iran

چکیده [English]

Nowadays, natural gas refineries have been developed to purify natural gas and optimize the extractive gas properties of gas wells for various uses, such as home use. Each gas refinery is composed of a set of process units, each of which can be a factor in the emission of greenhouse gases into the environment. Therefore, the purpose of this paper is to first study and estimates the greenhouse gas emissions of the process units in the two refineries of Shahid Hasheminejad and Fajr Jam and then provides solutions to improve performance and reduce carbon dioxide emissions in these refineries. Generally, greenhouse gas emission sources are divided into three sections: combustion, process and fugitive emissions. In the combustion section, four mass balance methods (based on the amount and composition of fuel), stack outlet gas analysis method, stack outlet gas analysis method and general propagation coefficient method have been used for both refineries. Comparison of the results of these four methods for boilers in these two refineries shows the mass balance method will result in more accurate results in calculating the CO2 emission and emission factor for the calculation of the CH4 emission. Also, the fugitive emission related to equipment leakage of wastewater treatment process related to these two refineries has been estimated. The results of the estimation of greenhouse gas emissions in these two refineries show that the flaring of gases, carbon dioxide in the raw gas entering the refinery and fuel consumption in the energy conversion equipment are three main sources of greenhouse gas emissions. Therefore, 11 projects to improve the efficiency and reduce carbon dioxide emissions in these two refineries have been presented around the flaring reduction, improving energy efficiency (in all three sectors of production, transmission and consumption), and CO2 capture from exhaust gases from the stack of furnace.

کلیدواژه‌ها [English]

  • Gas Refinery
  • Greenhouse Gas Emissions
  • Emission Reduction
  • Performance Improvement
  • Sustainable Development
  1. پروژه پژوهشی شناسایی پتانسیل پروژه‌های مکانیسم توسعه پاک در پالایشگاه‌های گاز خانگیران و فجر جم، مدیریت پژوهش و فناوری شرکت ملی گاز ایران، 1389-1390
  2. EUROPIA. 2030e2050 European contribution to EU energy pathways to 2050. Brussels, Belgium: The European Petroleum Industry Association. Available at: http://www.europia.com/content/default.asp?PageID¼782; 2011.
  3. IEA. Energy technology perspective. Paris: OCED/IEA; 2010. 2010.
  4. European Commission. Commission staff working document, impact assessment, Accompanying document to the: communication from the commission of the European Parliament, the Council, The European Economic and Social Committee and The Committee of the Regions, A Roadmap for moving to a competitive low carbon economy in 2050, SEC; 2011. 288 final; 2011. Brussels: 8.3.2011.
  5. EUROPIA. European draft position paper on the review process of the EU ETS directive. Brussels: European Petroleum Industry Association; 2007.
  6. USEPA. United States Environment Protection Agency, Available and emerging technologies for reducing greenhouse gas emissions from the petroleum refining industry. Office of air and radiation; October 2010.
  7. Szklo A, Schaeffer R. Fuel specification, energy consumption and CO2 emission in oil refineries. Energy 2007; 32(7):1075e92.
  8. Worrell E, Galitsky C. Energy efficiency improvement and cost saving opportunities for petroleum refineries, An ENERGY STAR guide for energy and plant managers. Berkeley, US: Ernest Orlando Lawrence Berkeley National Laboratory. Report LBNL-56183.105 p. Available at: www. energystar.gov/ia/business/industry/ES_Petroleum_Energy_Guide.pdf?eca6- 79e5; February 2005.
  9. Molle W, Wever E. Oil refineries and petrochemical industries in Europe. GeoJournal 1984;9(4):421e30.
  10. IPPC. Reference document on best available techniques for Mineral Oil and Gas Refineries. Seville, Spain: Integrated Pollution Prevention and Control (IPPC), European Commission. European Commission 425 p. Available at: eippcb.jrc.es/reference/; 2003.
  11. Saygin D, Patel MK, Tam C, Gielen DJ. Chemical and petrochemical sector e potential of best practice technology and other measures for improving energy efficiency. Paris: OECD/IEA. 55 p. Available at: www.iea.org/papers/ 2009/chemical_petrochemical_sector.pdf; 2009.
  12. De Lima RS, Schaeffer R. The energy efficiency of crude oil refining in Brazil: a Brazilian refinery plant case. Energy 2011; 36(5):3101e12.
  13. Holmgren K, Sternhufvud C. CO2-emission reduction costs for petroleum refineries in Sweden. Journal of Cleaner Production 2008;16(3):385e94.
  14. http://unfccc.cdm.int
  15. http://www.epa.gov
  16. Gas Research Institute Canada (GRI Canada). “Handbook for Estimating Methane Emissions From Canadian Natural Gas Systems”. Prepared by Clearstone Engineering Ltd. Enerco Engineering Ltd. and Radian International for Gas Technology Canada. Guelph, ON, 1998.
  17. http://www.api.org
  18. API 2004 - American Petroleum Institute (API), Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry; API, Washington, DC, 2004.
  19. Intergovernmental Panel on Climate Change (IPCC), “Guidelines for National Greenhouse Gas Inventories; Reference Manual (Volume 3), United Nations Environment Programme, the Organization for Economic Co-operation and Development, the International Energy Agency, and the Intergovernmental Panel on Climate Change, 1996.
  20. S.M. Al-Salem. Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view. Energy 81 (2015) 575-587.
  21. Johansson D, Rootzen J, Bernstsson T, Johnsson F. Assessment of strategies for CO2 abetment in the European petroleum refining industry. Energy 2012; 42: 375e86.
  • تاریخ دریافت: 04 اردیبهشت 1401
  • تاریخ پذیرش: 04 اردیبهشت 1401