مقایسۀ عملکرد تری ‌‌ریفرمرهای بستر ثابت، بستر شناور و ستون حبابی دوغابی جهت تولید گاز سنتز

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، واحد علوم و تحقیقات فارس، دانشگاه آزاد اسلامی، شیراز، ایران

2 استادیار، گروه مهندسی شیمی، دانشگاه آزاد اسلامی، واحد مرودشت، ایران

چکیده

تری‌‌ ریفرمینگ یک ترکیب کمک‌گرفته از ریفرمینگ دی‌‌اکسیدکربن، ریفرمینگ بخار و اکسیداسیون جزئی متان برای تولید گاز سنتز در یک رآکتور است. در این مقاله، عملکرد رآکتور تری ‌‌ریفرمر ستون حبابی دوغابی با رآکتورهای تری ‌‌ریفرمر بستر ثابت و بستر شناور مقایسه شده است. فرایند رآکتور ستون حبابی دوغابی در شرایط پایدار تحلیل شد و با مقایسۀ نتایج شبیه‌‌سازی رآکتور سنتز متانول و داده‌‌های Air Products' (1991) RUN E-8.1، معتبرسازی مدل انجام شد. تبدیل متان در رآکتور تری ‌‌ریفرمر ستون حبابی دوغابی نسبت به رآکتورهای تری‌‌ ریفرمر بستر ثابت و بستر شناور به‌ترتیب ۶/۳۳درصد و ۶/۶۶درصد کاهش و همچنین بازده هیدروژن ۰/۵۸درصد و ۱۸درصد کاهش پیدا کرد. در رآکتورهای تری ‌‌ریفرمر بستر ثابت و بستر سیال برای تولید متانول، دمای بستر کاتالیستی به‌ترتیب ۱۷۸۰ و ۱۴۳۲ کلوین بود ولی این پیکربندی جدید، دمای بستر کاتالیستی را به‌دلیل اختلاط بی‌‌نظیر به ۱۱۵۷/۵ کلوین کاهش داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparing the Performance of the Fixed-bed, Fluidized-bed and Slurry Bubble Column Tri-reformers Reactors to Produce Synthesis Gas

نویسندگان [English]

  • Meysam Abdosheikhi 1
  • Zahra Arab Aboosaadei 2

1 MSc Student, Department of Chemical Engineering Fars Science and Research Branch of Islamic Azad University, Shiraz,, Iran,

2 Department of Chemical Engineering, Islamic Azad University, Marvdasht,, Iran

چکیده [English]

Tri-reforming is a synergetic combination of carbon dioxide reforming, steam reforming and partial oxidation of methane in a single unit to produce synthesis gas. In this research, the slurry bubble column tri-reformer reactor performance is compared with those of fluidized-bed and fixed-bed tri-reformer reactors. The process of slurry bubble column performance under steady state conditions was analyzed, and model validation was carried out by comparing the methanol synthesis reactor model results with Air Products’ (1991) RUN E-8.1. Slurry bubble column tri-reformer reactor has reduced methane conversion by 6.33% and 6.66%, relative to fixed-bed and fluidized-bed tri-reformer reactors; moreover, it has reduced hydrogen yield by 0.58% and 18% relative to fixed-bed and fluidized-bed tri-reformer reactors. In fixed-bed and fluidized-bed tri-reformer reactors, temperature in the catalytic bed for methanol feed unit was 1680 K and 1432 K, respectively. However, due to the unique mixing, the temperature in the catalytic bed for slurry bubble column tri-reformer reactor reduced to 1157.5 K. Slurry bubble column tri-reformer reactor suggested  instead of fixed-bed and fluidized-bed tri-reformer reactors to produce synthesis gas, due to significant fall temperature in the catalytic bed and low repairs because of simple structure.

کلیدواژه‌ها [English]

  • Slurry bubble column reactor
  • Fixed-bed reactor
  • Fluidized-bed reactor
  • Tri-reformer
  • Synthesis gas
  1. Vakili, R., E. Pourazadi, P. Setoodeh, R. Eslamloueyan, M.R. Rahimpour, “Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor”, Applied Energy, vol. 88, pp. 1211–1223, 2011.
  2. Jiang, H., H. Li, H. Xu, Y. Zhang, “Preparation of Ni/MgxTi1_xO catalysts and investigation on their stability in tri-reforming of methane”, Fuel Process Technol, vol. 88, pp. 988–995, 2007.
  3. Arab Aboosadi, Z., A.H. Jahanmiri, M.R. Rahimpour, “Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method”, Applied Energy, vol. 88, pp. 2691–2701, 2011.
  4. Song, C.S., “Tri-reforming: A new process for reducing CO2 emissions”, Chemical Innovation, vol. 31, pp. 21–26, 2001.
  5. Khajeh, S., Z. Arab Aboosadi, B. Honarvar, “Optimizing the fluidized-bed reactor for synthesis gas production by tri-reforming”, Chemical engineering research and design, Vol. 94, pp. 407–416, 2014.
  6. Khajeh, S., Arab Aboosadi, Z., Honarvar, B., “A comparative study between operability of fluidized-bed and fixed-bed reactors to produce synthesis gas through tri-reforming”, Journal of Natural Gas Science and Engineering, vol. 19, pp. 152–160, 2014.
  7. De Groote, A.M., G.F. Froment, “Simulation of the catalytic partial oxidation of methane to synthesis gas”, Applied Catalysis A, vol. 138, pp. 245–264, 1996.
  8. Setinc, M., J. Levec., “On the kinetics of liquid-phase methanol synthesis over commercial Cu/ZnO/Al2O3 catalyst”, Chemical Engineering Science, Vol. 54, pp. 3577–3586, 1999.
  9. Marano, J.J., G.D. Holder, “Characterization of Fischer–Tropsch liquids for vapor–liquid equilibria calculations”, Fluid Phase Equilibria, vol. 138, pp. 1–21, 1997.
  10. Wu, Y., D. Gidaspow, “Hydrodynamic simulation of methanol synthesis in gas-liquid slurry bubble column reactors”, Chemical Engineering Science, vol. 55, pp. 573-587, 2000.
  • تاریخ دریافت: 05 اردیبهشت 1401
  • تاریخ پذیرش: 05 اردیبهشت 1401