کاربرد نانوفوتوکاتالیست در تولید گاز سنتز جهت تولید متانول تجدید پذیر: مطالعه آزمایشگاهی و مروری

نوع مقاله : مقاله ترویجی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه شیراز، شیراز، ایران بهره‌بردار ارشد، شرکت پتروشیمی آپادانا خلیج ‌فارس، عسلویه، ایران

2 فارغ التحصیل کارشناسی ارشد، گروه مهندسی شیمی، واحد شهرضا، دانشگاه آزاد اسلامی، اصفهان، ایران بهره‌بردار ارشد، شرکت پتروشیمی آپادانا خلیج ‌فارس، عسلویه، ایران

3 فارغ التحصیل کارشناسی ارشد، گروه مهندسی گاز، دانشگاه صنعت نفت، اهواز، ایران بهره‌بردار ارشد، شرکت پتروشیمی آپادانا خلیج ‌فارس، عسلویه، ایران

چکیده

متانول یکی از چهار ماده شیمیایی اساسی در کنار اتیلن، پروپیلن و آمونیاک است که برای تولید سایر محصولات شیمیایی استفاده می‌شود. تولید صنعتی متانول به گاز سنتز (مخلوطی از CO، H2 و CO2)، وابسته است. یکی از روش‌های تولید هیدروژن از منابع تجدید پذیر و آلی، هیدروژن سبز است که تحقیقات در این زمینه به‌عنوان یک سوخت تجدید پذیر درحال‌توسعه است. دی‌اکسید کربن (CO2) به‌عنوان یک گاز گلخانه‌ای و عامل اصلی تغییرات اقلیم جهانی است که با استفاده از مطالعات انجام‌شده، عملیات جذب و بازیافت آن به محصولات و سوخت‌های باارزش در حال انجام است. یکی از روش‌های کاهش CO2 تولید متانول است. در این مطالعه، با استفاده از روش آزمایشگاهی نانو فوتوکاتالیست و نور UV (روش تجدید پذیر)، گاز سنتز با ترکیب آب و هیدروکربن تولید گردید. نتایج آزمایشگاهی نشان می‌دهد با تخریب ۸۵/۳ درصد هیدروکربن موجود در آب، کارایی نانوفوتوکاتالیست کرومات مس بر پایه اکسید تیتانیوم در تولید گاز سنتز حدود ۱۴ درصد بیشتر از نانو فوتوکاتالیست اکسید تیتانیوم است. علاوه بر این، فاز کریستالی و ساختار ماده، مورفولوژی و ترکیب شیمیایی آن با استفاده از اندازه‌گیری‌های XRD، SEM/EDS، TEM/EDS و XPS مورد آزمایش و مورد آنالیز قرار گرفت. این روش کاتالیستی به دلیل کاهش انتشار گازهای گلخانه‌ای و آثار زیست‌محیطی در جهت تولید یک سوخت پاک می‌تواند حائز اهمیت باشد. یکی از کاربردهای متانول در خوراک واحد MTBE، جهت افزایش عدد اکتان بنزین است. همچنین، پیشنهاد می‌شود در آینده با کاهش قیمت متانول در بازار جهانی و اهمیت روزافزون مسائل زیست‌محیطی، از طریق مشوق‌های مناسب، جهت سرمایه‌گذاری برای تبدیل متانول به پروپیلن تلاش شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Application of Nano photocatalyst in the Production of Synthesis Gas for the Production of Renewable Methanol: An Experimental and Review Study

نویسندگان [English]

  • Abdolah Golkari 1
  • Ayoub Bahmyari 2
  • Danial Sargazi 3

1 M.Sc., Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran Senior Operator, Persian Gulf Apadana Petrochemical Company, Asaluyeh, Iran

2 M.Sc., Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Isfahan, Iran Senior Operator, Persian Gulf Apadana Petrochemical Company, Asaluyeh, Iran

3 M.Sc., Group of Gas Engineering, Petroleum University of Technology, Ahvaz, Iran Senior Operator, Persian Gulf Apadana Petrochemical Company, Asaluyeh, Iran

چکیده [English]

Methanol is one of the four basic chemicals that is used beside ethylene, propylene and ammonia to produce other chemicals. Industrial production of methanol is dependent on synthesis gas (a mixture of CO, H2 and CO2). One of the approaches of producing hydrogen from renewable and organic sources is green hydrogen, and researches in this field is being developed as a renewable fuel. Carbon dioxide (CO2) is a greenhouse gas and the main reason of global climate change, which is being studied and recycled to valuable products and fuels. Methanol production is one of method for decreasing CO2. In this study, using an experimental method of nano-photocatalyst and UV light (renewable method), synthesis gas by combining water and hydrocarbons was produced. Experimental results show that with the degradation of 85.3% of hydrocarbons in water, the efficiency of titanium oxide-based copper chromate nano-photocatalyst in the production of synthesized gas is about 14% higher than that of titanium oxide nano-photocatalyst. In addition, the crystalline phase and material structure, morphology and chemical composition were tested and analyzed using the measurements of XRD, SEM/EDS, TEM/EDS and XPS. This catalytic technique can be important in producing a clean fuel due to the reduction of greenhouse gas emissions and environmental effects. One of the applications of methanol in MTBE feed is to increase the octane number of gasoline. It is also proposed, with the reduction of methanol prices in the global market in the future and the growing importance of environmental issues, through appropriate incentives, efforts should be made to invest in the conversion of methanol to propylene.

کلیدواژه‌ها [English]

  • Nano photocatalyst
  • synthesis gas
  • Renewable Methanol
  • Green Hydrogen
  • MTBE Unit
  • Propylene
  1. NOAA, Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide, Vol., 2021.
  2. D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angewandte Chemie International Edition, Vol. 49, No. 35, pp. 6058-6082, 2010.
  3. M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2, Chemical reviews, Vol. 114, No. 3, pp. 1709-1742, 2014.
  4. G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, Vol. 148, No. 3-4, pp. 191-205, 2009.
  5. G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy & Environmental Science, Vol. 6, No. 6, pp. 1711-1731, 2013.
  6. J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment, Chemical reviews, Vol. 118, No. 2, pp. 434-504, 2018.
  7. W.-H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction, Chemical reviews, Vol. 115, No. 23, pp. 12936-12973, 2015.
  8. Methanol Institute. The methanol industry. Methanol Institute https://www.methanol.org/the- methanolindustry/(2021). 2021.
  9. E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum, Vol. 3, No. 1, pp. 109-126, 2017.
  10. A. Goeppert, M. Czaun, J.-P. Jones, G.S. Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products–closing the loop, Chemical Society Reviews, Vol. 43, No. 23, pp. 7995-8048, 2014.
  11. Carbon Recycling International. Resource efficiency by carbon recycling. CRI (2020). 2020; Available from: https://www.carbonrecycling.is.
  12. MefCO2. Methanol fuel from CO2. MefCO2 http://www.mefco2.eu. 2016.
  13. J.K. Nørskov, Latimer, A. & Dickens C. F. Research needs towards sustainable production of fuels and chemicals. Energy- X https://www.energy- x.eu/ research-needs-report. 2019.
  14. K.A. Ali, A.Z. Abdullah, A.R. Mohamed, Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review, Renewable and Sustainable Energy Reviews, Vol. 44, pp. 508-518, 2015.
  15. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chemical Society Reviews, Vol. 49, No. 5, pp. 1385-1413, 2020.
  16. G. Prieto, Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis, ChemSusChem, Vol. 10, No. 6, pp. 1056-1070, 2017.
  17. X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chemical Reviews, Vol. 120, No. 15, pp. 7984-8034, 2020.
  18. S. Navarro-Jaén, M. Virginie, J. Bonin, M. Robert, R. Wojcieszak, A.Y. Khodakov, Highlights and challenges in the selective reduction of carbon dioxide to methanol, Nature Reviews Chemistry, Vol., pp. 1-16, 2021.
  19. R. Syah, A. Davarpanah, M. Elveny, A. Ghasemi, D. Ramdan, The Economic Evaluation of Methanol and Propylene Production from Natural Gas at Petrochemical Industries in Iran, Sustainability, Vol. 13, No. 17, pp. 9990, 2021.
  20. S. Chakrabortty, J. Nayak, B. Ruj, P. Pal, R. Kumar, S. Banerjee, M. Sardar, P. Chakraborty, Photocatalytic conversion of CO2 to methanol using membrane-integrated Green approach: A review on capture, conversion and purification, Journal of Environmental Chemical Engineering, Vol. 8, No. 4, pp. 103935, 2020.
  21. F.N. Al-Rowaili, A. Jamal, M.S. Ba Shammakh, A. Rana, A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non-MOF catalysts: challenges and future prospects, ACS Sustainable Chemistry & Engineering, Vol. 6, No. 12, pp. 15895-15914, 2018.
  22. L. Zhang, Z.J. Zhao, J. Gong, Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms, Angewandte Chemie International Edition, Vol. 56, No. 38, pp. 11326-11353, 2017.
  23. J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution, Applied Catalysis B: Environmental, Vol. 176, pp. 709-717, 2015.
  24. J. Albo, A. Irabien, Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol, Journal of Catalysis, Vol. 343, pp. 232-239, 2016.
  25. J. Albo, G. Beobide, P. Castaño, A. Irabien, Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions, Journal of CO2 Utilization, Vol. 18, pp. 164-172, 2017.
  26. P.K. Jiwanti, K. Natsui, K. Nakata, Y. Einaga, Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution, RSC advances, Vol. 6, No. 104, pp. 102214-102217, 2016.
  27. D. Faggion Jr, W.D. Gonçalves, J. Dupont, CO2 electroreduction in ionic liquids, Frontiers in Chemistry, Vol. 7, pp. 102, 2019.
  28. L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han, Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels, Angewandte Chemie, Vol. 130, No. 43, pp. 14345-14349, 2018.
  29. D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts, Nature communications, Vol. 10, No. 1, pp. 1-9, 2019.
  30. M. Moura de Salles Pupo, R. Kortlever, Electrolyte effects on the electrochemical reduction of CO2, ChemPhysChem, Vol. 20, No. 22, pp. 2926-2935, 2019.
  31. IRENA AND METHANOL INSTITUTE (2021), Innovation Outlook: Renewable Methanol, International Renewable Energy Agency, Abu Dhabi. 2021.
  32. S.J. Hill. Chinese coal miner starts on world’s largest solar-powered hydrogen project. 2020; Available from: https://reneweconomy.com.au.
  33. Advanced Chemical Technologies. 2020 July 2020]; Available from: http://advancedchemicaltech.com.
  34. S.T. Wismann, J.S. Engbæk, S.B. Vendelbo, F.B. Bendixen, W.L. Eriksen, K. Aasberg-Petersen, C. Frandsen, I. Chorkendorff, P.M. Mortensen, Electrified methane reforming: A compact approach to greener industrial hydrogen production, Science, Vol. 364, No. 6442, pp. 756-759, 2019.
  35. E. Taibi, R. Miranda, W. Vanhoudt, T. Winkel, J.-C. Lanoix, F. Barth, Hydrogen from renewable power: Technology outlook for the energy transition, Vol., 2018.
  36. H.F.R. Power, Technology Outlook for the energy transition. 2018, IRENA, International Renewable Energy Agency.
  37. D. Simbeck, E. Chang, Hydrogen supply: cost estimate for hydrogen pathways–scoping analysis, National Renewable Energy Laboratory, Vol. 71, 2002.
  38. M. Taylor, P. Ralon, H. Anuta, S. Al-Zoghoul, Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2020, Google Scholar, Vol.
  39. IRENA, Recycle: bioenergy. Circular carbon economy”, Report 05, International Renewable Energy Agency, Abu Dhabi. 2020.
  40. C. Nicolaides, C. Stotijn, E. Van der Veen, M. Visser, Conversion of methanol and isobutanol to MTBE, Applied Catalysis A: General, Vol. 103, No. 2, pp. 223-232, 1993.
  41. J. Johnson, F. Peterson, Watch out; Here comes reformulated gasoline, CHEMTECH; (United States), Vol. 21, No. 5, 1991.
  42. J.N. Armor, New catalytic technology commercialized in the USA during the 1980's, Applied catalysis, Vol. 78, No. 2, pp. 141-173, 1991.
  43. A.G. Stepanov, K.I. Zamaraev, J.M. Thomas, 13C CP/MAS and2H NMR study of tert-butyl alcohol dehydration on H-ZSM-5 zeolite. Evidence for the formation of tert-butyl cation and tert-butyl silyl ether intermediates, Catalysis letters, Vol. 13, No. 4, pp. 407-422, 1992.
  44. M. Makarova, C. Williams, V. Romannikov, K. Zamaraev, J. Thomas, Influence of pore confinement on the catalytic dehydration of isobutyl alcohol on H-ZSM-5, Journal of the Chemical Society, Faraday Transactions, Vol. 86, No. 3, pp. 581-584, 1990.
  45. J. Nunan, K. Klier, R.G. Herman, Selective coupling of methanol and 2-methylpropan-1-ol to give 1-methoxy-2-methylpropane (methyl isobutyl ether), Journal of the Chemical Society, Chemical Communications, Vol., No. 10, pp. 676-678, 1985.
  46. K.J. Smith, C.W. Young, R.G. Herman, K. Klier, Development of a kinetic model for alcohol synthesis over a cesium-promoted copper/zinc oxide catalyst, Industrial & Engineering Chemistry Research, Vol. 30, No. 1, pp. 61-71, 1991.
  47. G. Hatchings, C. Nicolaides, M. Scurrell, Developments in the production of methyl tert-butyl ether, Catalysis today, Vol. 15, No. 1, pp. 23-49, 1992.
  48. Z. Nawaz, Light alkane dehydrogenation to light olefin technologies: a comprehensive review, Reviews in chemical engineering, Vol. 31, No. 5, pp. 413-436, 2015.
  49. Z. Nawaz, Methyl-Tert-Butyl-Ether Synthesis Reactor Modelling and Optimization Using an Aspen Custom Modeler, Hungarian Journal of Industry and Chemistry, Vol., pp. 1-7, 2017.
  50. ت.ص.ش. تهران, آشنایی با مجتمع پتروشیمی بندر امام. 2020, https://www.mbkchem.com/bandar-emam-petroleum/#.
  51. Q. Yang, D. Zhang, H. Zhou, C. Zhang, Process simulation, analysis and optimization of a coal to ethylene glycol process, Energy, Vol. 155, pp. 521-534, 2018.
  52. Y.-s. Luo, K. Yang, Q. Tang, J. Zhang, B. Xiong, A multi-criteria network-aware service composition algorithm in wireless environments, Computer Communications, Vol. 35, No. 15, pp. 1882-1892, 2012.
  53. Z. Xia, Z. Hu, J. Luo, UPTP vehicle trajectory prediction based on user preference under complexity environment, Wireless Personal Communications, Vol. 97, No. 3, pp. 4651-4665, 2017.
  54. C.A. Salman, M. Naqvi, E. Thorin, J. Yan, Impact of retrofitting existing combined heat and power plant with polygeneration of biomethane: A comparative techno-economic analysis of integrating different gasifiers, Energy Conversion and Management, Vol. 152, pp. 250-265, 2017.
  55. J.Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process, Catalysis today, Vol. 106, No. 1-4, pp. 103-107, 2005.
  56. C.N. Eng, E. Arnold, B. Vora, T. Fuglerud, S. Kvisle, H. Nilsen. Integration of the UOP/HYDRO MTO process into ethylene plants. in 10th Ethylene Producers' Conference. 1998.
  57. P. Barger, Methanol to olefins (MTO) and beyond, Catalytic Science Series, Vol. 3, pp. 239-260, 2002.
  58. X. Yu, S. Moldovan, V.V. Ordomsky, A.Y. Khodakov, Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO 2 to CO at ambient temperature, Nanoscale Advances, Vol. 1, No. 11, pp. 4321-4330, 2019.
  59. H. Dau, E. Fujita, L. Sun, Artificial photosynthesis: Beyond mimicking nature. 2017, Wiley Online Library. p. 4228-4235.
  60. T. Butburee, P. Chakthranont, C. Phawa, K. Faungnawakij, Beyond artificial photosynthesis: prospects on photobiorefinery, ChemCatChem, Vol. 12, No. 7, pp. 1873-1890, 2020.
  61. J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol, Science advances, Vol. 3, No. 10, pp. e1701290, 2017.
  62. T. Yan, L. Wang, Y. Liang, M. Makaremi, T.E. Wood, Y. Dai, B. Huang, A.A. Jelle, Y. Dong, G.A. Ozin, Polymorph selection towards photocatalytic gaseous CO2 hydrogenation, Nature communications, Vol. 10, No. 1, pp. 1-10, 2019.
  63. X. Yan, W. Sun, L. Fan, P.N. Duchesne, W. Wang, C. Kübel, D. Wang, S.G.H. Kumar, Y.F. Li, A. Tavasoli, Nickel@ Siloxene catalytic nanosheets for high-performance CO2 methanation, Nature communications, Vol. 10, No. 1, pp. 1-11, 2019.
  64. L. Wang, M. Ghoussoub, H. Wang, Y. Shao, W. Sun, A.A. Tountas, T.E. Wood, H. Li, J.Y.Y. Loh, Y. Dong, Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure, Joule, Vol. 2, No. 7, pp. 1369-1381, 2018.
  65. J. Jia, C. Qian, Y. Dong, Y.F. Li, H. Wang, M. Ghoussoub, K.T. Butler, A. Walsh, G.A. Ozin, Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering–perfecting imperfection, Chemical Society Reviews, Vol. 46, No. 15, pp. 4631-4644, 2017.
  • تاریخ دریافت: 30 تیر 1401
  • تاریخ بازنگری: 12 مرداد 1401
  • تاریخ پذیرش: 15 شهریور 1401