مروری بر مطالعات روش‌های محاسباتی بهینه‌سازی تزریق گاز در فرازآوری مصنوعی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی نفت، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران

2 استادیار، گروه مهندسی نفت، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

 به کمک روش‌های فرازآوری با گاز، توانایی سیال افزایش می‌یابد و تولید به سطح صورت می‌پذیرد. اغلب میزان گاز موجود در روش فرازآوری با گاز محدود است بنابراین تخصیص مناسب گاز در دسترس به چاه‌ها، یک مسأله مهم در روش فرازآوری با گاز به شمار می‌رود. بهینه‌سازی فرازآوری با گاز نقش مهمی در تولید و به حداکثر رساندن ارزش فعلی خالص دارد. به‌طور خلاصه، این مقاله یک بررسی جامع از تکنیک‌های بهینه‌سازی فرازآوری با گاز به کار گرفته شده در محدوده صنعت نفت از روش عددی تا تکنیک‌های فرا ابتکاری را ارائه می‌دهد. درنهایت نتایج مطالعات نشان می‌دهد که درجه پیچیدگی روش‌های عددی با افزایش تعداد پارامترها افزایش می‌یابد؛ اما روش‌های فرا ابتکاری توانایی برخورد با مسائل پیچیده را دارند. از طرفی روش‌های فرا ابتکاری خود، شامل روش‌هایی هستند که برتری هر یک به عواملی مانند همگرایی در بهینه سراسری، تعداد پارامترهای قابل تنظیم، دقت و سرعت بستگی دارد. به‌طور مثال با توجه به روشهای به‌کار رفته در مطالعات پیشین، الگوریتم چرخه آب و الگوریتم مبتنی بر آموزش و یادگیری همگرایی سریع از خود نشان دادند و الگوریتم ژنتیک در تعداد جمعیت کمتر اغلب در نقاط محلی به دام می‌افتد. الگوریتم کلونی مورچهها و چرخه آب زمان اجرای کمتری نسبت به سایر الگوریتمها دارند. هم‌چنین نحوه تخصیص و بهینه متغیرها در هر یک از الگوریتم‌ها نیز با یکدیگر متفاوت خواهد بود و همینطور انتخاب روش با جواب بهینه بهتر تنها با مقایسه نتایج به‌دست ‌آمده بنابر شرایط مسأله موجود، امکان‌پذیر خواهد بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Review of Gas Injection Optimization Studies in Artificial Gas Lift

نویسندگان [English]

  • Leila Zeinolabedini 1
  • Forough Ameli 2

1 M.Sc., Department of Petroleum Engineering, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran

2 Assistant Professor, Department of Petroleum Engineering, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

With the help of gas lift methods, the ability of the fluid increases and the production takes place at the surface. Often, the amount of gas available in the gas lift method is limited, so the appropriate allocation of the available gas to the wells is an important issue in the gas lift method. Optimizing gas lift plays an important role in generating and maximizing net present value. In summary, this paper provides a comprehensive review of gas lift optimization techniques used in the petroleum industry, from numerical methods to meta-heuristic techniques. Finally, the results of the studies show that the degree of complexity of the numerical methods increases with the increase in the number of parameters. However meta-heuristic methods can deal with complex problems. On the other hand, meta-heuristic methods include methods whose superiority depends on factors such as convergence to the global optimum, the number of adjustable parameters, accuracy, and speed. For example, according to the methods used in previous studies, the water cycle algorithm and the algorithm based on teaching and learning showed fast convergence, and the genetic algorithm is often trapped in local areas in the smaller population. The ant colony algorithm and the water cycle have less execution time than other algorithms. Also, the method of allocating and optimizing the variables in each of the algorithms will be different from each other, and it will be possible to choose the method with the best optimal solution only by comparing the results obtained according to the conditions of the existing problem.

کلیدواژه‌ها [English]

  • Gas lift
  • optimization techniques
  • Available gas
  • Oil production
  • Metaheuristic methods
  1. Ameli, F., S. Moghadam, and S. Shahmarvand, Polymer flooding. 2022, Gulf Professional Publishing. p. 33-94.
  2. Ameli, F., S. Moghaddam, and S. Shahmarvand, Introduction to gas flooding technique: fundamentals and applications, in Gas Injection Methods. 2023, Gulf Professional Publishing. p. 1-43.
  3. Hayatolgheibi, S.H. and F. Ameli, A mechanistic study on the behavior of injected hydrogels in porous media for enhanced oil recovery. Journal of Oil, Gas and Petrochemical Technology, 2020. 7(1): p. 75-87.
  4. Hayatolgheibi, S.H., F. Ameli, and M.R. Moghbeli, Performance Mechanism of Hydrogel for Enhanced Oil Recovery: A Numerical Simulation Study Based on the Phase-Field Approach. 2021.
  5. Hayatolgheibi, S.H., F. Ameli, and M.R. Moghbeli, A simulation study on hydrogel performance for enhanced oil recovery using phase-field method. Scientific Reports, 2022. 12(1): p. 2379.
  6. Hayatolgheilbi, S.H., et al., Investigation on the Polymer Flooding in a Heterogeneous Porous Media-Part II: Simulation Study. Journal of Oil, Gas and Petrochemical Technology, 2023. 10(1): p. 70-85.
  7. Jamali, A., et al., Synthesis and characterization of pH‐sensitive poly (acrylamide‐co‐methylenebisacrylamide‐co‐acrylic acid) hydrogel microspheres containing silica nanoparticles: Application in enhanced oil recovery processes. Journal of Applied Polymer Science, 2020. 137(12): p. 48491.
  8. Momenian, M., et al., Experimental study on Polymer Flooding in a Heterogeneous Porous Media-Part I: Effects of Copolymer and Silica Nanoparticles Composition. Journal of Oil, Gas and Petrochemical Technology, 2023. 10(2): p. 110-124.
  9. Shahmarvand, S. and F. Ameli, A Review on Recent Studies on the Simulation of Foam Flooding in Porous Media. Iranian Chemical Engineering Journal, 2021. 20(116): 64-83.
  10. Shahmarvand, S., et al., Experimental investigation on the stability of foam using combination of anionic and zwitterionic surfactants: A screening scenario to obtain optimum compound. Journal of Dispersion Science and Technology, 2023: p. 1-12.
  11. Crnogorac, M., et al., Selection of Artificial Lift Methods: A Brief Review and New Model Based on Fuzzy Logic. Energies, 2020. 13(7): p. 1758.
  12. Khamehchi, E., et al., Continuous gas lift optimization using genetic algorithm. Australian Journal of Basic and Applied Sciences, 2009. 3(4): p. 3919-3929.
  13. Langvik, A.S. and L. Dzubur, Optimization of oil production-applied to the marlim field. 2012, Institutt for industriell økonomi og teknologiledelse.
  14. Ghaedi, M., B. Aminshahidy, and C. Ghotbi, Improving Gas Allocation Optimization to a Group of Wells in Gas Lift Using an Efficient Hybrid Genetic Algorithm (HGA). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014. 36(21): p. 2361-2375.
  15. Ayatollahi, S., M. Narimani, and M. Moshfeghian, Intermittent gas lift in Aghajari oil field, a mathematical study. Journal of Petroleum Science and Engineering, 2004. 42(2-4): p. 245-255.
  16. Oloro, J. and E. Ogbolu, Gas Lift Optimization: Using Least Square Method and Solver. Greener Journal of Petroleum and Gas Exploration, 2013. 1(1).
  17. Rashid, K., W. Bailey, and B. Couët, A survey of methods for gas-lift optimization. Modelling and Simulation in Engineering, 2012. 2012: p. 24-24.
  18. قهنویه، م.ب.م.م.ر.، تعیین رژیم‌های جریان دوفازی و محاسبه افت فشار در یکی از چاه‌های میادین نفتی جنوب کشور تحت فرازآوری مصنوعی با گاز و بررسی اثر نرخ تزریق گاز، قطر لوله مغزی بر رژیم جریان. ماهنامه علمی اکتشاف و تولید نفت و گاز، 1399.
  19. Hamedi, H., F. Rashidi, and E. Khamehchi, A novel approach to the gas-lift allocation optimization problem. Petroleum Science and Technology, 2011. 29(4): p. 418-427.
  20. Takacs, GAS LIFT manual. 2005.
  21. Khamehchi, E. and M.R. Mahdiani, Gas allocation optimization methods in artificial gas lift. 2017: Springer.
  22. Mayhill, T. Simplified method for gas-lift well problem identification and diagnosis. in Fall Meeting of the Society of Petroleum Engineers of AIME. 1974. OnePetro.
  23. Gomez, V.R., Optimization of Continuous Flow Gas-Lift Systems. 1974, University of Tulsa.
  24. Redden, J.D., T. Sherman, and J.R. Blann. Optimizing gas-lift systems. in Fall Meeting of the Society of Petroleum Engineers of AIME. 1974. OnePetro.
  25. Kanu, E.P., J. Mach, and K.E. Brown, Economic approach to oil production and gas allocation in continuous gas lift (includes associated papers 10858 and 10865). Journal of Petroleum Technology, 1981. 33(10): p. 1887-1892.
  26. Nishikiori, N., et al. An improved method for gas lift allocation optimization. in SPE Annual Technical Conference and Exhibition. 1989. OnePetro.
  27. Buitrago, S., E. Rodriguez, and D. Espin. Global optimization techniques in gas allocation for continuous flow gas lift systems. in SPE gas technology symposium. 1996. OnePetro.
  28. Fang, W. and K. Lo, A generalized well-management scheme for reservoir simulation. SPE Reservoir Engineering, 1996. 11(02): p. 116-120.
  29. Dutta-Roy, K. and J. Kattapuram. A new approach to gas-lift allocation optimization. in SPE western regional meeting. 1997. OnePetro.
  30. Wang, P., Litvak, and K. Aziz. Optimization of production operations in petroleum fields. in SPE annual technical conference and exhibition. 2002. OnePetro.
  31. Alarco´ n, G.A., C.F. Torres, and L.E. Go´ mez, Global optimization of gas allocation to a group of wells in artificial lift using nonlinear constrained programming. Energy Resour. Technol., 2002. 124(4): p. 262-268.
  32. Kosmidis, V.D., J.D. Perkins, and E.N. Pistikopoulos, A mixed integer optimization formulation for the well scheduling problem on petroleum fields. Computers & Chemical Engineering, 2005. 29(7): p. 1523-1541.
  33. Camponogara, E. and A.M. de Conto, Lift-gas allocation under precedence constraints: MILP formulation and computational analysis. IEEE Transactions on Automation Science and Engineering, 2009. 6(3): p. 544-551.
  34. Chou, J.-S. and D.-N. Truong, A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Applied Mathematics and Computation, 2021. 389: p. 125535.
  35. Martinez, E., et al. Application of genetic algorithm on the distribution of gas-lift injection. in SPE Latin America and Caribbean Petroleum Engineering Conference. 1994. SPE.
  36. Ray, T. and R. Sarker. Multiobjective evolutionary approach to the solution of gas lift optimization problems. in 2006 IEEE International Conference on Evolutionary Computation. 2006. IEEE.
  37. Wang, P. and M. Litvak, Gas lift optimization for long-term reservoir simulations. SPE Reservoir Evaluation & Engineering, 2008. 11(01): p. 147-153.
  38. Zerafat, M.M., S. Ayatollahi, and A.A. Roosta, Genetic algorithms and ant colony approach for gas-lift allocation optimization. Journal of the Japan Petroleum Institute, 2009. 52(3): p. 102-107.
  39. نیا، ف.، et al., کنترل و بهینه‌سازی تولید نفت با فرازآوری طبیعی گاز. نشریه شیمی و مهندسی شیمی ایران، 2011. 30(1): 21-28.
  40. خمسه، ش.ف. and فرخ، افزایش تولید با به‌کارگیری روش‌های پیشرفته بهینه‌سازی سیستم فرازآوری مصنوعی با گاز در میادین فراساحلی. ماهنامه علمی اکتشاف و تولید نفت و گاز. 1391(90): 45-51.
  41. Hamedi, H. and E. Khamehchi, A nonlinear approach to gas lift allocation optimization with operational constraints using particle swarm optimization and a penalty function. Petroleum science and technology, 2012. 30(8): p. 775-785.
  42. Mahmudi, M. and M.T. Sadeghi, The optimization of continuous gas lift process using an integrated compositional model. Journal of Petroleum Science and Engineering, 2013. 108: p. 321-327.
  43. Ghaedi, M., C. Ghotbi, and B. Aminshahidy, The optimization of gas allocation to a group of wells in a gas lift using an efficient Ant Colony Algorithm (ACO). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014. 36(11): p. 1234-1248.
  44. Ghassemzadeh, S. and P. Pourafshary, Development of an intelligent economic model to optimize the initiation time of gas lift operation. Journal of Petroleum Exploration and Production Technology, 2015. 5(3): p. 315-320.
  45. Rasouli, H., et al., A surrogate integrated production modeling approach to long-term gas-lift allocation optimization. Chemical Engineering Communications, 2015. 202(5): p. 647-654.
  46. Mahdiani, M.R. and E. Khamehchi, Preventing instability phenomenon in gas-lift optimization. Iranian Journal of Oil and Gas Science and Technology, 2015. 4(1): p. 49-65.
  47. Miresmaeili, S.O.H., Pourafshary, and F.J. Farahani, A novel multi-objective estimation of distribution algorithm for solving gas lift allocation problem. Journal of Natural Gas Science and Engineering, 2015. 23: p. 272-280.
  48. Tavakoli, R., et al., Optimization of gas lift allocation using different models. Recent Advances in Petrochemical Science, 2017. 1(2).
  49. Namdar, H., Developing an improved approach to solving a new gas lift optimization problem. Journal of Petroleum Exploration and Production Technology, 2019. 9(4): 2965-2978.
  50. López, S., et al., Optimization of Lift Gas Allocation using Evolutionary Algorithms. International Journal of Computer Applications Technology and Research (IJCATR), 2019.
  51. Miresmaeili, S.O.H., et al., An improved optimization method in gas allocation for continuous flow gas-lift system. Journal of Petroleum Science and Engineering, 2019. 172: p. 819-830.
  52. Khoshkbarchi, M., et al. Application of Mesh Adaptive Derivative-Free Optimization Technique for Gas-Lift Optimization in an Integrated Reservoirs, Wells, and Facilities Modeling Environment. in SPE Canada Heavy Oil Conference. 2020. OnePetro.
  53. AlJuboori, M., et al. Numerical simulation of gas lift optimization using genetic algorithm for a Middle East oil field: feasibility study. in International Petroleum Technology Conference. 2020. OnePetro.
  54. Mahdiani, M.R., E. Khamehchi, and A.A. Suratgar, Using linear–quadratic regulator to optimally control the gas lift operation. Arabian Journal of Geosciences, 2021. 14: p. 1-19.
  55. Zeinolabedini, F.A.L., A Novel Approach to the Gas-Lift Allocation Optimization Problem. مقاله کنفرانسی، مهندسی شیمی ایران، 2023.
  56. Naghizadeh, A., et al., Multi-objective optimization of water-alternating flue gas process using machine learning and nature-inspired algorithms in a real geological field. Energy, 2024: p. 130413.
  57. Ghadery-Fahliyany, H., et al., Toward predicting thermal conductivity of hybrid nanofluids: Application of a committee of robust neural networks, theoretical, and empirical models. Powder Technology, 2024: p. 119506.
  58. Naghizadeh, A., et al., Modeling thermal conductivity of hydrogen-based binary gaseous mixtures using generalized regression neural network. International Journal of Hydrogen Energy, 2024. 59: p. 242-250.
  • تاریخ دریافت: 10 آبان 1402
  • تاریخ بازنگری: 05 دی 1402
  • تاریخ پذیرش: 08 دی 1402