تحلیل فنی و اقتصادی عملکرد یک سیستم تولید هم‌زمان بر پایۀ تکنولوژی پیل سوختی اکسید جامد با کاربری در ساختمان

نوع مقاله : مقاله ترویجی

نویسندگان

1 استادیار، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران

2 دانشجوی کارشناسی‌ارشد، مهندسی انرژی، دانشگاه آزاد واحد علوم و تحقیقات، تهران، تهران، صندوق پستی: 1439955941

چکیده

بخش ساختمان، یکی از مصرف‌کننده‌های عمدۀ انرژی در کشور به شمار می‌آید. تأمین برق در این بخش عمدتاً از نیروگاه‌های حرارتی با بازده پایین، همراه با نشر آلایندگی بالا صورت می‌گیرد. امروزه توسعه و به‌کارگیری سیستم‌های نوین تولید توان با بازده بالا و مستقل از شبکه توأم با آلایندگی کم حائز اهمیت است و تحقیقات گسترده‌‌ای به آن اختصاص یافته است. یکی از این سیستم‌ها پیل سوختی است. در این مقاله، به‌کارگیری پیل سوختی اکسید جامد به‌عنوان محرک اولیۀ یک سیستم تولید هم‌زمان جهت تأمین مصارف انرژی یک ساختمان نمونه با کاربری خانگی مورد تحلیل فنی و اقتصادی قرار گرفت. فرایند پیل سوختی اکسید جامد با استفاده از نرم‌افزار اسپن پلاس شبیه‌سازی و امکان بازیافت حرارتی گاز خروجی دما بالای پیل سوختی و تولید بخار برای فعال‌سازی یک سیکل تبرید جذبی دواثره و تولید آب گرم در یک مبدل بازیافت حرارتی بررسی گردید. تغییرات توان‌ و بازده سیستم در دو حالت تولید هم‌زمان برق و حرارت و تولید هم‌زمان برق، حرارت و برودت برحسب نرخ جریان سوخت ورودی به دست آمد. بر اساس مدل مصرف انرژی در ساختمان موردمطالعه، شرایط تطبیق توان‌های تولیدشده و بار ساختمان با کمترین هزینۀ مصرف سالیانۀ انرژی به دست آمد. نتایج تحلیل اقتصادی نشان داده است هزینه‌های مصارف انرژی سالیانۀ سیستم تولید هم‌زمان در مقایسه با یک سیستم تولید توان به‌صورت مجزا به‌شدت کاهش می‌یابد. با تجاری‌شدن تکنولوژی پیل سوختی اکسید جامد و کاهش بیشتر هزینه‌های ساخت، این سیستم می‌تواند جایگزین بسیار مناسبی برای سیستم‌های متداول تولید توان باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Technical and Economic Analysis of a Cogeneration System Based on Solid Oxide Fuel Cell (SOFC) Technology for Building Application

نویسندگان [English]

  • Mehdi Mehrpooya 1
  • Ali Rahimi Khameneh 2

1 Department of New Sciences and Technologies, University of Tehran, Tehran, Iran

2 Department of Energy and Environment, Science and Research Branch of Islamic Azad University, Tehran, Iran

چکیده [English]

Buildings are one of the major energy consumers in Iran. Electricity in this section is supplied by thermal power plants with low efficiency and high pollution emissions. Today, the development and deployment of novel power generation systems with high efficiency and independent of the network with low emissions are important, and extensive researches have been devoted to them. Fuel cell is one of these systems. In this paper, the application of Solid Oxide Fuel Cell (SOFC) as a prime mover of a cogeneration system to supply energy demands of a typical residential building has been analyzed from technical and economic points of view. The process of SOFC was simulated using Aspen Plus software and the possibility of heat recovery from SOFC high temperature exhaust gas to activate a double effect absorption refrigeration cycle by steam generation and hot water production in a heat recovery heat exchanger was examined. The power and efficiency of ‘heating and power cogeneration’ and ‘heating, power and cooling cogeneration’ systems versus inlet fuel rates was obtained. Based on building energy consumption model, the produced powers and building loads matching conditions were obtained for minimum annual energy cost. Economic analysis has shown that annual energy consumption cost in cogeneration system, compared to a separately produced power system, will be drastically lower. With the commercialization of SOFC technology and further reducing manufacturing costs, this system can be a suitable alternative to conventional power generation systems.

کلیدواژه‌ها [English]

  • Cogeneration
  • SOFC
  • Heat recovery
  • Aspen Plus
  • Building
  1. Iran Ministry of Energy, Energy Budget Report in 2011, 2013; http://www.tavanir.org.ir/budget/pages/nashriyat/energy.php (In Persian).
  2. Wu, D.W., R.Z. Wang, “Combined Cooling, Heating and Power: A Review”, Progress in Energy and Combustion Science, Vol. 32, No. 5, pp. 459-495, 2006.
  3. Zhang, X., S.H., Chan, G., Li., H.K., Ho, J., Li, Z., Feng, “A Review of Integration Strategies for Solid Oxide Fuel Cells”, Power Sources, Vol. 195, No.3, pp. 685-702, 2010.
  4. Braun, R.J., S.A., Klein, D.T., Reindl, “Evaluation of System Configurations for Solid Oxide Fuel Cell-based Micro-combined Heat and Power Generators in Residential Applications”, Power Sources, Vol. 158, No. 2, pp. 1290-1305, 2006.
  5. Kazempoor, P., V., Dorer, F., Ommi, “Evaluation of Hydrogen and Methane-fuelled Solid Oxide Fuel Cell Systems for Residential Applications: System Design Alternative and Parameter Study”, Hydrogen Energy, Vol. 34, No.20, pp. 8630-8644, 2009.
  6. Lee, K.H., R.K., Strand, “SOFC Cogeneration System for Building Applications, Part 1: Development of SOFC System-level Model and the Parametric Study”, Renewable Energy, Vol. 34, No. 12, pp. 2831-2838, 2009.
  7. Lee, K.H., R.K., Strand, “SOFC Cogeneration System for Building Applications, Part 2: System Configuration and Operating Condition Design”, Renewable Energy, Vol. 34, No. 12, pp. 2839-2846, 2009.
  8. Bompard, E., R., Napoli, B., Wan, G., Orsello, “Economics Evaluation of a 5kW SOFC Power System for Residential Use”, Hydrogen Energy, Vol. 33, No.12, pp. 3243-3247, 2008.
  9. Yu, Z., J., Han, X., Cao, “Investigation on Performance of an Integrated Solid Oxide Fuel Cell and Absorption Chiller Tri-generation System”, Hydrogen Energy, Vol. 36, No. 19, pp. 12561-12573, 2011.
  10. Zink, F., Y., Lu, L., Schaefer, “A Solid Oxide Fuel Cell System for Buildings”, Energy Conversion and Management, Vol. 48, No. 3, pp. 809-818, 2007.
  11. Zhang, W., E., Croiset, P.L., Douglas, M.W., Fowler, E., Entchevb, “Simulation of a Tubular Solid Oxide Fuel Cell Stack Using Aspen Plus Unit Operation Models”, Energy Conversion and Management, Vol. 46, No. 1, pp. 181–196, 2005.
  12. Doherty, W., A., Reynolds, D., Kennedy, “Computer Simulation of a Biomass Gasification-solid Oxide Fuel Cell Power System Using Aspen Plus”, Energy, Vol. 35, No. 12, pp. 4545-4555, 2010.
  13. EG&G Technical Services, Fuel Cell Handbook, Seventh Edition, Inc., USDOE, 2004.
  14. Zabihian, F., A., Fung, “A Review on Modeling of Hybrid Solid Oxide Fuel Cell Systems”, International Journal of Engineering, Vol. 3, No. 2, pp. 85-119, 2009.
  15. Braun, R.J., Optimal Design and Operation of Solid Oxide Fuel Cell Systems for Small-scale Stationary Applications, PhD Thesis, Department of Mechanical Engineering, University of Wisconsin- Madison, USA, 2002.
  16. Somers, C., A., Mortazavi, Y., Hwang, R., Radermacher, P., Rodgers, S., Al-Hashimi, “Modeling Water/lithium Bromide Absorption Chillers in ASPEN Plus”, Applied Energy, Vol. 88, No. 11, pp. 4197-4205, 2011.
  17. Soltandoost, M., Engine House Design, Second Edition, pp. 347-349 Tehran: Yazda, 2011, (In Persian).
  18. Herold, K., R., Radermacher, S.A., Klein, Absorption Chillers and Heat Pumps, CRC press, 1996.
  19. RETScreen® Engineering & Cases Textbook, RETScreen® International Clean Energy Decision Support Centre, Third Edition, 2005; http://www.retscreen.net.
  20. Soltandoost, M., Rule of Thumb Guide, Second Edition, p. 44, Tehran: Yazda, 2007, (In Persian).
  21. Sattari, S., Energy Audit of Building Systems: An Engineering Approach, pp. 408-424, Tehran: Hamayesh Sanat, 2009, (In Persian).
  22. Iran Ministry of Energy; http://www.tariff.moe.gov.ir.
  23. Peters, M.S., K.D., Timmerhaus, R.E., West, Plant Design and Economics for Chemical Engineers, Fifth Edition, p.892, McGraw Hill, 2003.
  24. Herold, K., E.L., Reyes, L., Harriman, D.V., Punwani, W.A., Ryan, Natural Gas-Fired Cooling Technologies and Economics, Report developed for Gas Technology Institute (GTI), p. 186, 2004.
  • تاریخ دریافت: 01 آذر 1396
  • تاریخ بازنگری: 11 بهمن 1396
  • تاریخ پذیرش: 04 مرداد 1397