گوگردزدایی اکسایشی نفتای سبک در حضور کاتالیست اکسید روی بر پایه زئولیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در کشورهای مختلف قوانین سخت گیرانه‌ای برای کاهش مقدار گوگرد موجود در سوخت‌ها اعمال می‌شود. روش گوگردزدایی اکسایشی یکی از بهترین روش‌های تکمیلی برای فرآیند گوگردزدایی هیدروژنی است. در این مقاله با استفاده از روش سطح پاسخ، اثرهای اصلی و متقابل دما، مدت زمان واکنش و غلظت اولیه گوگرد موجود در نفتا بر درصد تبدیل گوگرد در فرآیند گوگردزدایی اکسایشی نفتای سبک در حضور کاتالیست اکسید روی بر پایه‌ی زئولیت بررسی گردید. تحلیل واریانس نشان داد داده‌های تجربی به‌خوبی توسط مدل فاکتوریل خطی برازش شده است. متغیرهای دما، مدت زمان واکنش و غلظت اولیه‌ی گوگرد موجود در سوخت بر درصد تبدیل ترکیبات گوگرد اثر معنادار دارد. همچنین بین متغیرهای دما و مدت زمان واکنش اثر متقابل وجود دارد. بیشترین مقدار درصد تبدیل گوگرد به میزان 90% در دمای واکنش K 320، زمان واکنش 40 دقیقه در حضور نفتای سبک با درصد اولیه گوگرد ppm 244 حاصل گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Oxidative Desulfurization of Light Naphtha in the Presence of Zeolite Supported Zinc Oxide Catalyst

نویسندگان [English]

  • Zahra Mobasheri 1
  • Seyyed Hossein Zohdi 2

1 M. Sc. Student of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

2 Assistant Professor, Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

چکیده [English]

In various countries, strict rules are considered for reducing sulfur in the fuels. Oxidative desulfurization is known as one of the best complementary methods for the hydro-desulfurization. In this paper, using the response surface methodology, the effects of initial sulfur concentration in the naphtha fuel, reaction temperature, and reaction time on the sulfur conversion were investigated in the presence of zeolite supported zinc Oxide catalyst. Experiments were conducted at the conditions as follows: T=303.15-323.15 K, t=20-40 min, and initial sulfur concentration=150-250 ppm. Analysis of variance showed that the linear factorial model well fitted the experimental data. All the parameters as well as the interaction between reaction time and temperature affected the response, significantly. Maximum sulfur conversion of 90% was achieved at the temperature of 320 K, reaction time of 40 min, and initial sulfur concentration of 244 ppm.

کلیدواژه‌ها [English]

  • Light Naphtha
  • Desulfurization
  • Response surface methodology
  • Batch reactor
  • Empirical modeling
  • Interactions
  • Statistical analysis
  1. Dana, M., et al., Optimization of a continuous ultrasound assisted oxidative desulfurization (UAOD) process of diesel using response surface methodology (RSM) considering operating cost. Chinese Journal of Chemical Engineering, 2020. 28(5): p. 1384-1396.
  2. Ghorbani, N. and G. Moradi, Oxidative desulfurization of model and real oil samples using Mo supported on hierarchical alumina–silica: Process optimization by Box–Behnken experimental design. Chinese Journal of Chemical Engineering, 2019. 27(11): p. 2759-2770.
  3. Teimouri, A., M. Mahmoudsalehi, and H. Salavati, Catalytic oxidative desulfurization of dibenzothiophene utilizing molybdenum and vanadium oxides supported on MCM-41. International Journal of Hydrogen Energy, 2018. 43(31): p. 14816-14833.
  4. Yu, J., et al., Oxidative desulfurization of dibenzothiophene with molecular oxygen using cobalt and copper salen complexes encapsulated in NaY zeolite. Catalysis Today, 2020. 339: p. 105-112.
  5. Xun, S., et al., Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. Journal of colloid and interface science, 2019. 534: p. 239-247.
  6. Soleimani, M., A. Bassi, and A. Margaritis, Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnology advances, 2007. 25(6): p. 570-596.
  7. Jiang, Z., et al., Oxidative desulfurization of fuel oils. Chinese journal of catalysis, 2011. 32(5): p. 707-715.
  8. Wei, S., et al., Preparation, characterization, and catalytic performances of cobalt catalysts supported on KIT-6 silicas in oxidative desulfurization of dibenzothiophene. Fuel, 2017. 200: p. 11-21.
  9. Hossain, M.N., H.C. Park, and H.S. Choi, A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts, 2019. 9(3): p. 229.
  10. Campos-Martin, J., M. Capel-Sanchez, and J. Fierro, Highly efficient deep desulfurization of fuels by chemical oxidation. Green Chemistry, 2004. 6(11): p. 557-562.
  11. Qiu, L., et al., Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. Rsc Advances, 2016. 6(21): p. 17036-17045.
  12. Zhang, Y., et al., One-pot synthesis of cup-like ZSM-5 zeolite and its excellent oxidative desulfurization performance. RSC advances, 2018. 8(56): p. 31979-31983.
  13. Hartmann, M., Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004. 43(44): p. 5880-5882.
  14. Yu, X., et al., Ultrasound assisted catalytic oxidative desulfurization of diesel oil using CdO nanoparticles. Petroleum Science and Technology, 2018. 36(15): p. 1158-1163.
  15. Zhao, N., et al., Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization. Journal of solid state chemistry, 2015. 225: p. 347-353.
  16. Allahyari, Somaiyeh, et al., Oxidative Desulfurization of DBT Using Tri-metallic Ni-Mo-W Nanocatalysts Based on Different Natural Zeolites: Mordenite, Ferrierite, and Clinoptilolite. Journal of Petroleum Research, 2019. 29: p. 89-98.(In Persian)
  17. Jarullah, A.T., et al., Enhancement of light naphtha quality and environment using new synthetic nano-catalyst for oxidative desulfurization: Experiments and process modeling. Computers & Chemical Engineering, 2020. 140: p. 106869.
  18. Ahmed, G.S., et al., Design of an environmentally friendly reactor for naphtha oxidative desulfurization by air employing a new synthetic nano-catalyst based on experiments and modelling. Journal of cleaner production, 2020. 257: p. 120436.
  19. Meman, N.M., et al., Application of palladium supported on functionalized MWNTs for oxidative desulfurization of naphtha. Journal of Industrial and Engineering Chemistry, 2015. 22: p. 179-184.
  20. Beshkoofeh, S., et al., Preparation, Characterization, and Kinetics Model of MoCo/γ-Al2O3 Catalysts for Oxidative Desulfurization of Light Naphtha. Iranian Journal of Chemistry and Chemical Engineering, 2021. 40(6): p. 1777-1792.
  21. Sheibani, S., K. Zare, and S.M. Mousavi Safavi, Investigation of Oxidative Desulfurization of Light Naphtha by NiMo/γ-Al2O3 Catalyst. Iranian Journal of Chemistry and Chemical Engineering, 2021. 40(2): p. 417-427.
  22. Li, X., et al., Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renewable Energy, 2019. 139: p. 551-559.
  • تاریخ دریافت: 20 دی 1401
  • تاریخ بازنگری: 25 بهمن 1401
  • تاریخ پذیرش: 22 اسفند 1401