توزیع میکرو/نانوذرات ZrO2 بر روی فولاد ST37 به کمک فرآیند اصطکاک اغتشاشی و بررسی تأثیر آن بر ارتقاء خواص فولاد در برابر خوردگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه صنعت نفت، آبادان، ایران

2 شرکت گاز استان هرمزگان، صندوق پستی: 7915996489، بندرعباس، ایران

3 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه هرمزگان، بندرعباس، ایران

چکیده

 این مقاله با انجام فرآیند اصطکاک اغتشاشی در حالت‌های مختلف بر روی فولاد St37 به بررسی تغییر خواص آن در برابر خوردگی پرداخته است. فرآیند اصطکاک اغتشاشی در ۴ حالت روی فولاد St37 انجام شد. حالت اول فرآیند با سرعت دورانی ۹۰۰rpm و بدون میکرو/نانو ذره، حالت دوم در سرعت دورانی ۵۶۰rpm و با میکرو ذره ZrO2، حالت سوم با سرعت دورانی ۵۶۰rpm و با نانو ذره ZrO2 و حالت چهارم با سرعت دورانی 900 rpm و با نانو ذره ZrO2 صورت پذیرفت. سرعت خطی در کلیه نمونه‌ها ۱۰۰mm/min بود. مقاومت در برابر خوردگی هر ۴ حالت با مقاومت در برابر خوردگی فولاد ST37 که هیچ فرآیندی بر روی آن انجام نشده بود (نمونه خام)؛ مقایسه گردید. نتایج نشان دادند که نمونه تولید شده با فرآیند اصطکاک اغتشاشی همراه با نانو ذره ZrO2 و سرعت دورانی 900 rpm بیش‌ترین افزایش مقاومت در برابر خوردگی را دارد. نمونه‌های حاوی نانو ذره در هر دو سرعت دورانی ۵۶۰rpm و ۹۰۰rpm نسبت به نمونه‌ی خام، مقاومت در برابر خوردگی بیش‌تری داشتند. در نمونه‌ای که روی آن فرآیند به‌تنهایی و بدون حضور میکرو/نانو ذرات انجام شده بود و همچنین نمونه‌ای که از میکرو ذرات استفاده نموده بود؛ مقاومت در برابر خوردگی نسبت به فلز پایه کاهش یافت. افزایش سرعت دورانی فرآیند منجر به افزایش مقاومت در برابر خوردگی نمونه گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Nano/Micro ZrO2 Particles Dispersion on St37 Steel by Using Friction Stir Processing and Investigating Its Effect on Steel Corrosion Resistance Promotion

نویسندگان [English]

  • Seyed Mohammad Hossein Sharifi 1
  • Armin Sabetghadam-Isfahani 2
  • Yegane Davoodbeygi 3

1 Mechanical Engineering Department, Petroleum University of Technology, Abadan, Iran

2 Hormozgan Province Gas Company, Bandar Abbas, Iran

3 Assistant Professor, Department of Chemical Engineering, Chemical and Petroleum Engineering Faculty,University of Hormozgan, Bandar Abbas, Iran

چکیده [English]

In this paper, the effect of Friction Stir Processing (FSP) on the enhancement of St37 properties against corrosion has been investigated. The FSP was carried out in 4 modes on St37: The first state of the process was done with a rotational speed of 900 rpm and without micro/Nano particles, the second state was done at a rotational speed of 560 rpm and with ZrO2 micro particles, the third state was done with a rotational speed of 560 rpm and with ZrO2 nanoparticles and the fourth state was done with a rotational speed of 900 rpm and with ZrO2 nanoparticles. The traverse speed in all samples was 100 mm/min. Corrosion resistance of all 4 prepared samples was compared with the one in St37 steel Base Metal (which FSP had not been done on it). The results showed that the sample produced by FSP with ZrO2 nanoparticles and rotational speed of 900 rpm has the highest increase in corrosion resistance. All Nano dispersed samples showed more corrosion resistance than the Base Metal. The two samples, the FSPed one without any particle and the FSPed one with micro particles, showed less corrosion resistance in comparison to the one in Base Metal. Increasing the rotational speed of the process led to an increase in the corrosion resistance of the sample.

کلیدواژه‌ها [English]

  • Friction stir processing
  • St 37
  • Corrosion Resistance
  • ZrO2 nanoparticle
[1]    K. Masubuchi and D. C. Martin, “Mechanisms of Cracking in HY-80 Steel Weldments,” Welding Journal, vol. 41, pp. 37–38, 1962.
[2]    J. H. Nixon, “Underwater Repair Technology,” Amsterdam, Netherlands, Acta Metallurgica, vol. 19, pp. 108, 2000.
[3]    L. N. Overfield, “Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel,” M.S. Thesis, Naval Postgraduate School, pp: 42-48, September 2012.
[4]    A. Thangarasu, N. Murugan, I. Dinaharan, and S. J. Vijay, “Influence of Traverse Speed on Microstructure and Mechanical Properties of AA6082-TiC Surface Composite Fabricated by Friction Stir Processing,” Procedia Materials Science, vol. 5, pp. 2115-2121, 2014.
[5]    R. S. Mishra, “Friction Stir Welding and Processing,” Materials Science Engineering, vol. 50, pp. 1, 2005.
[6]    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, “Nitriding Thermochemical Treatment and Niobium Dual Effect on Nano Crystallization of FeSiBCu Ribbons,” Scripta Materialia, vol. 42, pp. 63–68, 2000.
[7]    R.S. Mishra and M.W. Mahoney, “Time-evolution of Heat Affected Zone (HAZ) of Friction Stir Welds of AA7075-T651,” Material Science Forum, vol. 35, pp. 7–12, 2001.
[8]    P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, “Influence of Texture on Mechanical Behavior of Friction-stir-processed Magnesium Alloy,” Scripta Materialia, vol. 44, pp. 61–66, 2001.
[9]    R.S. Mishra, Z.Y. Ma, and I. Charit, “Effect of Friction Stir Processing on Fatigue Behavior of an Investment Cast Al-7Si-0.6 Mg Alloy,” Material Science and Engineering, vol. A341, pp. 7–10, 2002.
[10]    J. C. Huang and G. T. Gray, "Serrated Flow and Negative Rate Sensitivity in Al-Li Base Alloys", Scripta Metallurgica and Materialia, vol. 24, pp. 85-90, 1990.
[11]    Z.Y. Ma, S.R. Sharma, R.S. Mishra, and M.W. Mahoney, “Microstructural Modification of Cast Aluminum Alloys via Friction Stir Processing,” Material Science Forum, vols. 426–432, vol. 31, pp. 91–96, 2003.
[12]    M. Afzali, and V. Asghari, “Study of the effect of nano ZrO2 and TiO2 and rotation speed on friction behavior of rotary friction welding of HIPS and PP,” Functional Composites and Structures, vol. 4, pp. 1-13, 2022.
[13]    C.J. Lee, J.C. Huang, and P.J. Hsieh, “Irradiation Damage in Proton Irradiated Pd-Cr Alloys,” Scripta Materialia, vol. 54, pp. 15–20, 2006.
[14]    Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “On the Crystal Structure and Stability of the T1 Precipitates in Aged Al-Li-Cu Alloys,” Materials and Science Engineering, vol. A419, pp. 44–48, 2006.
[15]    Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Strengthening Mechanisms Associated with T1 Particles in Two Al-Li-Cu Alloys,” Materials and Science Engineering, vol. A433, pp. 50–54, 2006.
[16]    M. Dixit, J.W. Newkirk, and R.S. Mishra, “Effect of Friction Stir Processing on Microstructure and Mechanical Properties of A Cast-Magnesium-Rare Earth Alloy,” Scripta Materialia, vol. 56, pp. 41–44, 2007.
[17]    S.R. Sharma, Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, “Friction Stir Welding and Processing,” Scripta Materialia, vol. 51, pp. 37–41, 2004.
[18]    Z.Y. Ma, S. R. Sharma, R.S. Mishra, and M.W. Mahoney, “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy,” Metallurgical Material Transaction, vol. 37A, pp. 23–36, 2006.
[19]    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, “Friction stir processing: a novel technique for fabrication of surface composite,” Scripta Materialia, vol. 54, pp. 23–26, 2006.
[20]    K. Oh-ishi and T.R. McNelley, “Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy,” Metallurgical and Materials Transaction, A, vol. 35A, pp. 51–61, 2004.
[21]    A.H. Feng and Z.Y. Ma, “Microstructure and Strain Hardening of A Friction Stir Welded High-Strength Al-Zn-Mg Alloy,” Scripta Materialia, vol. 56, pp. 39–40, 2007.
[22]    C.J. Hsu, P.W. Kao, and N.J. Ho, “Intermetallic-reinforced Aluminum Matrix Composites Produced in Situ by Friction Stir Processing,” Scripta Materialia, vol. 53, pp. 41–45, 2005.
[23]    C.H. Chuang, J.C. Huang, and P.J. Hsieh, “High Strain Rate Super plasticity of Mg Based Composites Fabricated by Friction Stir Processing,” Scripta Materialia, vol. 53, pp. 55–60, 2005.
[24]    C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, “Microstructural Evolution in Commercial Purity Aluminum During High-pressure Torsion,” Acta Materialia, vol. 54, pp. 41–49, 2006.
[25]    H. Mehdi, and R. S. Mishra, “Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6,” Advances in Industrial and Manufacturing Engineering, vol. 3, pp. 39-71, 2021.
[26]    A. Kumar, K. Pal, and S. Mula, “Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro- and nanocomposites by friction stir processing,” Journal of Manufacturing Processes, vol. 30, pp. 1-13, 2017.
[27]    Y. Mazaheri, A. Heidarpour, M. M. Jalilvand, and M. Roknin, “Effect of Friction Stir Processing on the Microhardness, Wear and Corrosion Behavior of Al6061 and Al6061/SiO2 Nanocomposites,” Journal of Materials Engineering and Performance, vol. 28, pp. 4826-4837, 2019.
[28]    R Raja, S. Jannet, J. Aby, and D. S. Ebenezer, J. Dhas, “Study of the mechanical, wear and corrosion behaviour of silicon nitride nanoparticles reinforced copper surface composite through friction stir processing,” Engineering Research Express, vol. 4, pp. 1-9, 2022.
  • تاریخ دریافت: 11 اردیبهشت 1402
  • تاریخ بازنگری: 13 خرداد 1402
  • تاریخ پذیرش: 30 تیر 1402