اثر تعادل بخار-مایع بر جذب گاز CO2 توسط محلول آبی پپرازین و مایع یونی به روش طراحی آزمایش مرکب مرکزی

نوع مقاله : مقاله ترویجی

نویسندگان

1 دانشجوی دکترای، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه یاسوج، یاسوج، ایران

2 استادیار گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران

چکیده

در این پژوهش، جذب گاز CO2 توسط محلول آبی پپرازین و مایع یونی به روش سطح پاسخ (RSM) بر اساس طراحی مرکب مرکزی (CCD) به‌منظور طراحی آزمایش‌ها، ساخت مدل‌ها و یافتن شرایط عملیاتی بهینه برای دستیابی به پاسخ‌های مطلوب در محدوده دما، فشار و زمان مورد بررسی قرار گرفت. طراحی و بهینه‌سازی این گروه از واحدهای جداسازی، مستلزم داشتن داده‌های دقیق تعادلی و ترمودینامیکی بخار-مایع می‌باشد. در این تحقیق، شرایط بهینه‌ی بارگیری گاز CO2 با استفاده از روش طراحی مرکب مرکزی تعیین گردید. تجزیه‌وتحلیل معادلات، مطابق رگرسیون چندجمله‌ای درجه دوم و تحلیل واریانس ANOVA انجام شد. مطابق نتایج به‌دست‌آمده، افزایش فشار و زمان و کاهش دما، منجر به افزایش میزان حلالیت گاز دی‌اکسید کربن در مخلوط آمینی گردید. شرایط بهینه‌ی جذب نیز در فشار bar ۶/۱، دمای ℃ ۲۱ و زمان ۱/۵ ساعت به‌دست آمد. در انتها، مکانیزم تأثیر دما بر میزان حلالیت با اصل لوشاتلیه، تأثیر فشار بر حلالیت با قانون هنری و تأثیر زمان بر حلالیت با بررسی سینتیکی واکنش جذب تعیین گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Vapor-Liquid Equilibrium on CO2 Gas Absorption by Amine Peprasine- Ionic liquid Solution Using Central Composite Test Design Method

نویسندگان [English]

  • Soheila Zare 1
  • Abdolrasoul Pouranfard 2

1 PhD Student, Department of Chemical Engineering, Engineering Faculty, Yasuj University, Yasouj, Iran

2 Assistant Professor, Department of Chemical Engineering, Engineering Faculty, Yasouj University, Yasouj, Iran

چکیده [English]

In this research, the absorption of CO2 by an aqueous solution of Amine Piperazine-Ionic liquid was investigated. The Response Surface Method (RSM) based on Central Composite Design (CCD) was used to design experiments, build models, and find optimal operating conditions to achieve optimal responses in the range of used temperature, pressure, and time. The design and optimization of this group of separation units requires to accurate equilibrium and thermodynamic data of vapor-liquid equilibrium. In this study, the optimal loading conditions of CO2 gas were determined using the central composite design (CMD) method. Analysis of the equations performed using quadratic polynomial regression and ANOVA analysis of variance. Enhancement of the pressure and time and reducing the temperature cause increase the solubility of carbon dioxide gas in the amine mixture. The optimal absorption conditions were obtained at pressure 1.6 bar, temperature 21 ℃ and time 1.5 hours. Finally, the mechanism of temperature effect on solubility via Lochatelier’s principle, the effect of pressure on solubility by Henry’s law, and the effect of time on solubility by examining the kinetics of the adsorption reaction was investigated.

کلیدواژه‌ها [English]

  • CO2 gas absorption
  • Amine Peprasine-Ionic liquid mixture
  • Vapor-liquid equilibrium
  • CMD
  1. A Mikhaylov, N.Moiseev, K. Aleshin, & T.Burkhardt, (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897.
  2. Ermolaev, C. Sundberg, M.Pell, S.Smårs & H.Jönsson, (2019). Effects of moisture on emissions of methane, nitrous oxide and carbon dioxide from food and garden waste composting. Journal of Cleaner Production, 240, 118165.
  3. Kiefer, J.Rodríguez-Guzmán, J. Watson, B.van Wendel de Joode, D. Mergler & da Silva, A. S. (2016). Worker health and safety and climate change in the Americas: issues and research needs. Revista Panamericana de Salud Pública, 40, 192-197.
  4. Ahmed Ali, M. I. Ahmad & Yusup, Y. (2020). Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability, 12(18), 7427.
  5. Godin, W. Liu, S. Ren & C. C. Xu, (2021). Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering, 9(4), 105644
  6. İ. Koç, (2021). Changes that may occur in temperature, rain, and climate types due to global climate change: the example of Düzce. Turkish Journal of Agriculture-Food Science and Technology, 9(8), 1545-1554.
  7. D. Güzel, & K. Alp, (2020). Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmospheric Pollution Research, 11(12), 2190-2201.
  8. Xiao, F. Peng, Y. Zhang, J. Wang, Y. Zhuge, S. Zhang & H. Gao, (2019). Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. Journal of Cleaner Production, 234, 258-274.
  9. Muthumari, R. K. Nilavuckkarasi, B. Ambedkar, J. Dhanalakshmi, P. P. Papitha & M. Moniha, (2020). Infrared spectroscopic and physico-chemical analysis of carbon dioxide-rich and-lean 30 wt% monoethanolamine. Journal of Environmental Engineering and Science, 15(4), 164-171.
  10. Majafloo, (2019). Thermodynamic Modeling of Carbon Dioxide Absorption in Methyl Diethanolamine Aqueous Solutions. Nashrieh Shimi va Mohandesi Shimi Iran. 23;38(2). 183-94.
  11. Pashaei, A. Ghaemi, M. Nasiri & B. Karami, (2020). Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology. ACS omega, 5(15), pp.8432-8448.
  12. Choubtashani, S., & Rashidi, H. (2023). CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling. Energy, 267, 126447.
  13. Zare, & A. Pouranfard, (2022). Experimental and theoretical study of CO2 absorption by Water-Ionic liquid-Piperazine solution using the method of Constrained Mixture Design. Farayandno, 17(79), 25-40.
  14. Hagenkord, B. Funke, E. Qian, M. Hegde, K. B. Jacobs, M. Ferber, & D. Bick, (2022). Design and reporting considerations for genetic screening tests. The Journal of Molecular Diagnostics, 22(5), 599-609.
  15. Akbarzad, A. Ghaemi, & M. Rezakazemi, (2022). Optimization and modeling of carbon dioxide absorption into blended sulfolane and piperazine aqueous solution in a stirrer reactor. International Journal of Environmental Science and Technology, 19(5), 4047-4068.
  16. Choubtashani, & H. Rashidi, (2022). CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling. Energy, 126447.
  17. Esmaeili, A. Tamuzi, T. N. Borhani, Y. Xiang, & Shao, L. (2022). Modeling of carbon dioxide absorption by solution of piperazine and methyldiethanolamine in a rotating packed bed. Chemical Engineering Science, 248, 117118.
  18. , Hasanzadeh, M., Mojaver, T., Azdast, & C. B. Park, (2021). Polyethylene waste gasification syngas analysis and multi-objective optimization using central composite design for simultaneous minimization of required heat and maximization of exergy efficiency. Energy Conversion and Management, 247, 114713.
  19. Ozturk, E., Dagdas, B. A. Fil, & M. J. Bashir, (2021). Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization. Environmental Technology & Innovation, 21, 101264.
  20. , ANTIPOVA, C., POZO, G., D., GUILLÉN-GOSÁLBEZ, BOER, L. F. CABEZA, & L. JIMÉNEZ, (2016). On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization. Computers & Chemical Engineering, 74, 48-58.
  21. Saengsawang, P. Bhuyar, N. Manmai, V. K. Ponnusamy, R. Ramaraj, & Y. Unpaprom, (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841.
  22. , Elkelawy, H. A. E., Bastawissi, K. K., Esmaeil, A. M., Radwan, H., Panchal, K. Sadasivuni, & M. Israr, (2020). Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel, 266, 117072.
  23. Kumar, B. Dabade, L. Wankhade (2022). Determination of prediction model and optimization of process parameters for fabrication of Al-SiC composite using response surface methodology. Advances in Materials and Processing Technologies. 17: 1-7.
  24. J. Lin,, & S. Y.Jeng, (2020) "Optimization of deep learning network parameters using uniform experimental design for breast cancer histopathological image classification". Diagnostics, 10 (9), 622.
  • تاریخ دریافت: 22 خرداد 1402
  • تاریخ بازنگری: 05 مرداد 1402
  • تاریخ پذیرش: 28 مرداد 1402